參考文獻 |
[1] 田永銘,「緩衝材料之壓實性質與其特性初步探討」,行政院原子能委員會委託研究計畫研究報告,中壢 (2003)
[2] 吳柏林,「放射性廢料處置場中砂-皂土混合物緩衝材料之壓實性質」,博士論文,國立中央大學土木工程研究所,中壢 (2005)
[3] 林青瑩,「環狀地盤改良後基樁之側向變形特性」,碩士論文,國立中央大學土木工程研究所,中壢 (2005)
[4] 邱太銘,「放射性廢棄物管理」,中興工程科技研究發展基金會,台北 (2002)
[5] 莊文壽、洪錦雄、董家寶,「深層地質處置技術之研究」,核研季刊,第三十七期,第 44-54 頁,(2000)
[6] 莊育蓁,「軟弱岩石潛盾及推進工程之有限元素分析」,碩士論文,國立中興大學土木工程研究所,台中 (2005)
[7] 郭明峰,「皂土-碎石混合物之壓實性質」,碩士論文,國立中央大學土木工程研究所,中壢 (2004)
[8] 陳志霖,「放射性廢料處置場緩衝材料之力學性質」,碩士論文,國立中央大學土木工程研究所,中壢 (2000)
[9] 愛發股份有限公司,ABAQUS實務入門引導,全華科技圖書股份有限公司,台北 (2005)
[10] Adams, M. J., McKeown, R., “Mocromechanical analysis of the pressure-volume relationships for powders under confined uniaxial compression,” Powder Technology, Vol. 88, pp. 155-163 (1996).
[11] Aydin, I., B. J. Briscoe, and K. Y. Sanliturk, “Internal form of compacted ceramic components : A comparison of a finite element modelling with experiment,” Powder Technology, Vol. 89, No. 3, pp. 239-254 (1996).
[12] Boonsinsuk, P., Pulles, B. C., Kjartanson, B. H., and Dixon, D. A., “Prediction of compactive effort for a bentonite-sand mixture,” 44th Canadian Geotechnical Conference Volume 2, Alberta, Canada, pp. 64.1-64.12 (1991).
[13] Briscoe, B. J., and Rough, S. L., “The effects of wall friction in powder compaction,” Colloids and Surfaces A : Physicochemical and Engineering Aspects, Vol. 137, pp. 103-116 (1998).
[14] Chinh, P. D., “Weighted self-consistent approximations for elastic completely random mixtures,” Mechanics of Materials, Vol. 32, pp. 463-470 (2000).
[15] Christensen, R. M., “A critical evaluation for a class of micromechanics models,” J. Mech. Phys. Solids, Vol. 38, No. 3, pp. 379-404 (1990).
[16] Coube, O., A. C. F. Cocks, and C. Y. Wu, “Experimental and numerical study of die filling, powder transfer and die compaction,” Powder Metallurgy, Vol. 48, No. 1, pp. 68-76 (2005).
[17] Coube, O. and H. Riedel, “Numerical simulation of metal powder die compaction with special consideration of cracking,” Powder Metallurgy, Vol. 43, No. 2, pp. 123-131 (2000).
[18] Denny, P. J., “Compaction equations : a comparison of the Hechel and Kawakita equations,” Powder Technology, Vol. 127, pp. 162-172 (2002).
[19] Johannesson L. E., “Compaction of full size blocks of bentonite for the KBS-3 concept – initial tests for the evaluating the technique,” SKB technical report R 99-66, Swedish, (1999).
[20] Falgon, D., E. Vidal-Salle, J.-C. Boyer, R. Peczalski, and J. Andrieu, “Identification procedure of a hardening law for powder compaction,” Powder Technology, Vol. 157, No. 1-3, pp. 183-190 (2005).
[21] Figliola, R. S., and Beasley, D. E., Theory and Design for Mechanical Measurements. John Wiley & Sons, U.S., (1995).
[22] Foo, Y. Y., Y. Sheng, and B. J. Briscoe, “An experimental and numerical study of the compaction of alumina agglomerates,” International Journal of Solids and Structures, Vol. 41, No. 21, pp. 5929-5943 (2004).
[23] Guyoncourt, D. M. M., Tweed, J. H., Gough, A., Dawson, J., and Pater, L., “Constitutive data and friction measurements of powders using instrumented die,” Powder Metallurgy, Vol. 44, No. 1, pp. 25-33 (2001).
[24] Hibbitt, Karlsson and Sorensen, ABAQUS Version 6.5 User's Manual,U.S., (2005).
[25] Hashin, H., “Analysis of composite materials–A Survey,” Journal of Applied Mechanics, Vol. 50, pp. 481-505 (1983).
[26] Japan Nuclear Cycle Development Institute, “Repository design and engineering technology,” JNC Supporting Report 2, Japan, (1999).
[27] Johannesson, L. E., Nord, S., Pusch, R., Sjöblom, R., “Isostatic compaction of beaker shaped bentonite blocks on the scale 1:4,” SKB technical report TR 00-14, Swedish, (2000).
[28] Johannesson, L. E., Börgesson, L., Sanden, T., “Compaction of bentonite blocks – development of technique for industrial production of blocks which are manageable by man,” SKB technical report TR 95-19, Swedish, (1995).
[29] Justino, J. G., M. K. Alves, A. N. Klein, and H. A. Al-Qureshi, “Constitutive model for the elastic-plastic analysis of porous sintered materials,” International Journal of Machine Tools and Manufacture, Vol. 44, No. 14, pp. 1471-1479 (2004).
[30] Kadiri, M. S., A. Michrafy, and J. A. Dodds, “Pharmaceutical powders compaction: Experimental and numerical analysis of the density distribution,” Powder Technology, Vol. 157, No. 1-3, pp. 176-182 (2005).
[31] Kim, H. S., S.-T. Oh, and J.-S. Lee, “Constitutive model for cold compaction of ceramic powder,” Journal of the American Ceramic Society, Vol. 85, No. 8, pp. 2137-2138 (2002).
[32] Kim, K. T., S. C. Lee, and H. S. Ryu, “Densification behavior of aluminum alloy powder mixed with zirconia powder inclusion under cold compaction,” Materials Science and Engineering A, Vol. 340, No. 1-2, pp. 41-48 (2003).
[33] Klemm, U., Sobek, D., Schone, B., and Stockmann, J., “Friction measurements during dry compaction of silicon carbide,” Journal of the European Ceramic Society, Vol. 17, pp. 141-145 (1997).
[34] Kraft, T. and H. Riedel, “Numerical simulation of die compaction and sintering,” Powder Metallurgy, Vol. 45, No. 3, pp. 227-231 (2002).
[35] Lee, S. C. and K. T. Kim, “Densification behavior of aluminum alloy powder under cold compaction,” International Journal of Mechanical Sciences, Vol. 44, No. 7, pp. 1295-1308 (2002).
[36] Li, Y., Liu, H., Rockabrand, A., “Wall friction and lubrication during compaction of coal logs,” Powder Technology, Vol. 87, pp. 259-267 (1996).
[37] Ltd, W. L. w. A., “Buffer and backfilling systems for a nuclear fuel waste disposal vault,” AECL technical record TR-341, Canada, (1985).
[38] Macleod, H. M., and Marshall, K., “The Determination of density distribution in ceramic compacts using autoradiography,” Powder Technology, Vol. 16, pp. 107-122 (1977).
[39] Marcial, D., Delage, P., and Cui, Y. J., “On the high stress compression of bentonites,” Canadian Geotechnical Journal, Vol. 39, pp. 812-820 (2002).
[40] Mclaughlin, R., “A study of the differential scheme for composite materials,” Int. J. Engng. Sci, Vol. 15, pp. 237-244 (1977).
[41] Michrafy, A., J. A. Dodds, and M. S. Kadiri, “Wall friction in the compaction of pharmaceutical powders: Measurement and effect on the density distribution,” Powder Technology, Vol. 148, No. 1, pp. 53-55 (2004).
[42] Michrafy, A., D. Ringenbacher, and P. Tchoreloff, “Modelling the compaction behaviour of powders: Application to pharmaceutical powders,” Powder Technology, Vol. 127, No. 3, pp. 257-266 (2002).
[43] Nedderman, R. M., Statics and kinematics of granular materials. Cambridge University Press, U.K., (1992).
[44] Nemat-Nasser, S., Hori, M., Micro-mechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam, (1993).
[45] Norris, A. N., “A differential scheme for the effective moduli of composites,” Mechanics of materials, Vol. 4, pp. 1-16 (1985).
[46] Omine, K., Ochiai, H., and Yoshida, N., “Estimation of in-situ strength of cement-treated soils based on a two-phase mixture model,” Soils and foundations, Vol. 38, No. 4, pp. 17-29 (1998).
[47] Panelli, R., Filho, F. A., “A study of a new phenomenological compacting equation,” Powder Technology, Vol. 114, pp. 255-261 (2001).
[48] Park, H. and K. T. Kim, “Consolidation behavior of SiC powder under cold compaction,” Materials Science and Engineering A : Structural Materials: Properties, Microstructure and Processing, Vol. 299, No. 1-2, pp. 116-124 (2001).
[49] Push, R., “The buffer and backfill handbook part 1:definitions, basic relationships, and laboratory methods,” SKB technical report TR 02-20, Swedish (2002).
[50] Push, R., “The buffer and backfill handbook part 2:materials and techniques,” SKB technical report TR 02-12, Swedish (2002).
[51] Reiterer, M., T. Kraft, U. Janosovits, and H. Riedel, “Finite element simulation of cold isostatic pressing and sintering of SiC components,” Ceramics International, Vol. 30, No. 2, pp. 177-183 (2004).
[52] Roure, S., Bouvard, D., Doremus, P., and Pavier, E., “Analysis of die compaction of tungsten carbide and cobalt powder mixtures,” Powder Metallurgy, Vol. 42, No. 2, pp. 164-170 (1999).
[53] Sinka, I. C., J. C. Cunningham, and A. Zavaliangos, “The effect of wall friction in the compaction of pharmaceutical tablets with curved faces: A validation study of the Drucker-Prager Cap model,” Powder Technology, Vol. 133, No. 1-3, pp. 33-43 (2003).
[54] Smith, L. N., P. S. Midha, and A. D. Graham, “Simulation of metal powder compaction, for the development of a knowledge based powder metallurgy process advisor,” Journal of Materials Processing Technology, Vol. 79, No. 1-3, pp. 94-100 (1998).
[55] Stanley-Wood, N. G., Enlargement and compaction of particulate solids. Butterworths, U.K., (1983).
[56] Tien, Y. M., Wu, P. L., and Kuo, M. F., “The measuring method for wall friction during bentonite block compaction and ejection,” Proceedings of the 5th Asian Young Geotechnical Engineers Conference, Taipei, Roc, pp. 187-194 (2004).
[57] Tien, Y. M., P. L. Wu, W. S. Chuang, and L. H. Wu, “Micromechanical model for compaction characteristics of bentonite-sand mixtures,” Applied Clay Science, Vol. 26, No. 1-4, pp. 489-498 (2004).
[58] Wu, C. Y., O. M. Ruddy, A. C. Bentham, B. C. Hancock, S. M. Best, and J. A. Elliott, “Modelling the mechanical behaviour of pharmaceutical powders during compaction,” Powder Technology, Vol. 152, No. 1-3, pp. 107-117 (2005).
[59] Wu, T. T., “The effect of inclusion shape on the elastic moduli of a two-phase material,” Int. J. Solids Structure, Vol. 2, pp. 1-8 (1966).
[60] Yang, H. C., J. K. Kim, and K. T. Kim, “Rubber isostatic pressing and cold isostatic pressing of metal powder,” Materials Science and Engineering A, Vol. 382, No. 1-2, pp. 41-49 (2004).
[61] Yong, R. N., Boonsinsuk, P., and Wong, G., “Formulation of backfill material for nuclear fuel waste disposal valut,” Canadian Geotechnical Journal, Vol. 23, pp. 216-228 (1986).
[62] Zahlan, N., D. T. Knight, A. Backhouse, and G. A. Leiper, “Modelling powder compaction and pressure cycling,” Powder Technology, Vol. 114, No. 1-3, pp. 112-117 (2001).
[63] Zhao, X. H., Chen, W. F., “The effective elastic moduli of concrete and composite materials,” Composites Part B, Vol. 29B, pp. 31-40 (1998). |