「央大學八十九學年度碩士班研究生入學試

應用數學

共/質第/

What is the Laplace transform? Please use 2 different methods (one of which must be the Laplace transform) to solve the following equations,

(i).
$$y'' + y = 3\cos 2t$$
,

$$y(0) = 0$$
, $y'(0) = 0$

and

(ii)
$$y'' - 2.8y' + 1.96y = 2e^{1.4t}$$
 $y(0) = 0$, $y'(0) = 0$.

$$y(0) = 0$$
 , $y'(0) = 0$.

(20%)

Please solve the equation,

$$y'' + y = F \cos(t)$$
 with $y(0) = A$, $y'(0) = 0$,

and discuss its solution characteristics. What is resonance? Can you describe resonance physically with this equation and its associated solution?

(15%)

Use the Fourier-Legendre expansion method to represent the following 3. functions.

(a).
$$f(x) = 15 - 42x^2 + 35x^4$$

and

Hint:
$$p_0 = 1$$
, $p_1 = x$, $p_2 = \frac{1}{2}(3x^2 - 1)$, $p_3 = \frac{1}{2}(5x^3 - 3x)$ and $p_4 = \frac{1}{8}(35x^4 - 30x^2 + 3)$.

(15%)

Define gradient, divergence and curl. Show some of their applications in physics and state their physical meaning.

(10%)

What is Green's theorem? What is divergence theorem? What is Stokes's. 5. When and where you can apply these theorems? Theorem? examples.

(10%)

Find the eigenvalues and eigenvectors of the following matrix, 6.

$$\begin{bmatrix} 0 & 2 & 0 \\ 3 & -2 & 3 \\ 0 & 3 & 0 \end{bmatrix}.$$

. (15%)

Find the potential in the square $0 \le x \le 2$, $0 \le y \le 2$ if the upper side is kept at 7. the potential $\sin \frac{1}{2}\pi x$ and the other sides are kept at zero.