立	中央大學/	八十九學年	F度碩士班研	究生入	學試題卷
er cont		1 h			

熱力學

1	Explain

- (a) zeroth law of thermodynamics (87.)
- (b) Principle of the increase of entropy (? %)
- (c) ideal gas (7%)
- (d) Otto cycle (7 %)
- 2 · (a) State the first law of thermodynamics. (Explain in words) $(2/2)^2$
 - (b) Show that if the Kelvin-Plank statement of the second law of thermodynamics were not true, a violation of the Clausius statement would be possible. (7%)
 - (c) Show that if the Clausius statement of the second law of thermodynamics were not true, a violation of the Kelvin-Planck statement would be possible. (7%)
- 3 · (a) Derive $C_p C_v = [V (\partial H/\partial P)_r] (\partial P/\partial T)_v$

 C_p : heat capacity at constant pressure (P)

C_v: heat capacity at constant Volume (V)

T: temperature

H: heat content

(102)

- (b) from (a), calculate C_p-C_v for ideal gas? (10)
- 4 · Estimate the Carnot efficiency for air near surface and at 5 km in height (make assumptions if you need)
- 5 · (a) show that the Gibbs function remain constant for a reversible isothermal and isobaric process. (10%)
 - (b) Derive the Clausius Clapeyron equation for the first order phase transitions: (10%)