## 國立中央大學九十一學年度碩士班研究生入學試題祭

所別: 大氣物理研究所 不分組 科目: 近代物理學 具/貝第/頁

1. A photon of energy E is scattered by a particle of rest energy  $E_0$  (assumed to be initially at rest in the laboratory frame).

(a) Find the scattering angle of the photon in term of the kinetic energy of the recoiling particle, E, and  $E_0$ , (10%)

- (b) Find the maximum kinetic energy of the recoiling particle in term of E, and  $E_0$ . (5%)
- (c) Find the maximum momentum of the recoiling particle. (5%)
- (d) What is the energy of the photon after this maximal collision? (5%)
- 2. A 500 kg satellite is in a circular orbit about the earth with a period of 90 minutes.
  - (a) Applying the Bohr quantum condition on angular momentum, calculate the quantum number n for this orbit. (5%)
  - (b) Find the radius of this orbit. (5%)
- (c) Find the radius distance between this orbit and the next allowed higher orbit.

  Could we detect this distance experimentally? (5%)

(Planck constant is  $6.626 \times 10^{-34} J.s.$ , and the radius of the earth is 6378km with the gravitational acceleration  $9.8m/s^2$  on the earth surface.)

3. A classical oscillator with mass m on a spring with spring-constant  $\kappa$ . The energy of the oscillator is given by

$$E = \frac{p^2}{2m} + \frac{\kappa x^2}{2}$$

where p is the momentum and x is the displacement distance.

- (a) Determine the energy for a quantum oscillator, in term of the momentum and the displacement distance. (5%)
- (b) Determine the uncertainty of position  $\Delta x$  at which the energy is minimum. (10%)
- (c) Determine the minimum energy, in terms of the angular frequency of a classical oscillator  $\omega = \sqrt{\kappa/m}$ . (5%)
- 4. What are the angles between the orbital angular momentum vector  $\vec{L}$  and the z-axis for the orbital quantum number t = 2 of a hydrogen atom? (10%)
- 5. Describe building up the periodic table of the elements. (10%)
- 6. What is the principle of a three-level laser ? (10%)
- 7. Consider a gas of atoms, each atom has only three possible energies:  $-\varepsilon$ , 0,  $+\varepsilon$ .
  - (a) Obtain an expression for the probability that, when the system is in thermal equilibrium at temperature T, the lowest level is occupied. (5%)
- (b) Find the average energy of the system. (5%)

