國立中央大學九十一學年度碩士班研究生入學試題祭 所別: 大氣物理研究所 不分組 科目: 近代物理學 具/貝第/頁 1. A photon of energy E is scattered by a particle of rest energy E_0 (assumed to be initially at rest in the laboratory frame). (a) Find the scattering angle of the photon in term of the kinetic energy of the recoiling particle, E, and E_0 , (10%) - (b) Find the maximum kinetic energy of the recoiling particle in term of E, and E_0 . (5%) - (c) Find the maximum momentum of the recoiling particle. (5%) - (d) What is the energy of the photon after this maximal collision? (5%) - 2. A 500 kg satellite is in a circular orbit about the earth with a period of 90 minutes. - (a) Applying the Bohr quantum condition on angular momentum, calculate the quantum number n for this orbit. (5%) - (b) Find the radius of this orbit. (5%) - (c) Find the radius distance between this orbit and the next allowed higher orbit. Could we detect this distance experimentally? (5%) (Planck constant is $6.626 \times 10^{-34} J.s.$, and the radius of the earth is 6378km with the gravitational acceleration $9.8m/s^2$ on the earth surface.) 3. A classical oscillator with mass m on a spring with spring-constant κ . The energy of the oscillator is given by $$E = \frac{p^2}{2m} + \frac{\kappa x^2}{2}$$ where p is the momentum and x is the displacement distance. - (a) Determine the energy for a quantum oscillator, in term of the momentum and the displacement distance. (5%) - (b) Determine the uncertainty of position Δx at which the energy is minimum. (10%) - (c) Determine the minimum energy, in terms of the angular frequency of a classical oscillator $\omega = \sqrt{\kappa/m}$. (5%) - 4. What are the angles between the orbital angular momentum vector \vec{L} and the z-axis for the orbital quantum number t = 2 of a hydrogen atom? (10%) - 5. Describe building up the periodic table of the elements. (10%) - 6. What is the principle of a three-level laser ? (10%) - 7. Consider a gas of atoms, each atom has only three possible energies: $-\varepsilon$, 0, $+\varepsilon$. - (a) Obtain an expression for the probability that, when the system is in thermal equilibrium at temperature T, the lowest level is occupied. (5%) - (b) Find the average energy of the system. (5%)