博碩士論文 89343005 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.191.238.193
姓名 劉哲銘(Che-Ming Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 氧化鋁單晶強化機制及在其表面生長奈微米鎂鋁尖晶石之研究
(The research of strengthening mechanisms of sapphire crystal and the growth of Mg-Al spinel nano-micro crystals on sapphire surface)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氧化鋁單晶(Sapphire)為一高機械強度,高化學穩定性及高穿透率之氧化物晶體,因此目前經常被使用在紅外線光窗上,為了增加光窗的強度,使其有更寬廣的應用範圍,因此Sapphire的強化工作將變的相當重要。在本研究中利用了多項強化方式來針對Sapphire進行強化的工作,包括了有固溶強化(dopant)、析出強化(precipitation hardening)、熱處理(heat treatment)、預壓應力膜(compressive coatings),其中固溶強化的部分是利用雷射加熱提拉法(laser-heated pedestal growth, LHPG)來進行不同摻雜量的Mg:Sapphire晶纖生長,以瞭解在不同雜質濃度時對晶體強度之影響,同時也對Sapphire晶體內Mg雜質的偏析現象進行深入的探討。在其他三項強化機制上則是利用外購之一英吋Sapphire單晶片來進行研究,並利用Ring-on-ring的雙軸向破壞測試,獲得晶體之破壞模數(modulus of rupture, MOR)強度。其中在析出強化的實驗上,我們是藉由在Sapphire晶片上Mg金屬膜的鍍製、高溫擴散、時效處理等程序後,在Sapphire單晶中產生Spinel析出物來強化Sapphire強度,並能有效降低晶體的強度穩定性至10%以下,並探討強化的機制。同時也藉由不同的熱處理條件,瞭解熱處理對Sapphire晶體強度之影響,更成功的增加晶體強度達90%。最後配合氮化矽之預壓應力薄膜之鍍製,能更有效的增加Sapphire晶體的強度達一倍以上。
另外本研究的另一個重點是提出一種新的微奈米晶體生長法,主要是利用異質成核的觀念及固溶析出的方法在Sapphire 表面生長Mg-Al Spinel晶體。所生長之Spinel型態包括了微米晶體、跟奈米晶體兩種尺寸。其中Spinel微晶是利用鍍有Mg金屬膜之C軸Sapphire單晶,經過高溫擴散處理後在Sapphire表面之蝕刻坑所形成的。同時透過Sapphire基板平面上方向(in–plane orientation)的量測與表面析出結構的觀察,可以獲得Spine微晶與Sapphire基板間離軸 (off-axis)方向上的關係。另外本研究也在Sapphire表面上之階梯結構上成功的生長出奈米尺寸之Spinel晶體。並探討階梯(terrace-and-step)結構對析出晶體之影響。同時利用所觀察到Sapphire表面之階梯結構受到Spinel析出物之Pining 現象,來進一步證實晶體表面階梯移動之現象。
摘要(英) In this study, annealing, precipitation-strengthening, compressive coating and dopant processes were used to enhance the strength of sapphire crystal. In terms of the annealing process, the biaxial strength of the specimen was larger for a higher annealing temperature. After an Mg-sputtered sapphire crystal substrate went through a precipitation-strengthening process, Mg-Al spinel precipitation would occur. Sapphire that had undergone a precipitation-strengthening process had the best strength reliability in comparison with other strengthening processes. After the compressive coating process, the crystallized silicon nitride layer made the sapphire approximately twice as strong as an uncoated sample. The results show that a crystallized silicon nitride layer produces the greatest strength, with regard to the other strengthening processes. Beside, we grew Mg doped sapphire crystal fibers doped with various Mg concentrations from 0.5 mol% to 4 mol%, by the laser-heated pedestal growth method. It was easy to grow defect-free 0.5 mol% Mg-doped sapphire crystal fibers with lengths longer than 50mm, however, the length of the defect-free region decreased as the amount of MgO doping increased. The growth rates also influenced the quality of the fibers. We discuss the influence of the thermocapillary convection and the growth rate on the Mg distribution, and the reason for the formation of defects by constitutional supercooling is described. By means of thermomechanical analyzer measurements, we suggest that the strength of the sapphire can be enhanced by MgO doping, due to the increasing Young’s Modulus.
The Mg-Al spinel microcrystals and nanocrystals were successfully grown by the solution-precipitation process at the c-axial sapphire single crystal surface. The proposed innovative growth concept used the etch pits or the atomic steps as heterogeneous nucleation points for the growth process. Once Mg ions diffused into the sapphire crystal, the spinel crystals could be precipitated by quenching and aging treatment at etch pits or atomic steps. We found that the precipitated crystals were (111) Mg-Al spinels with a triangular pyramidal shape on etch pits. The results of X-Ray Diffraction analysis indicate that the in–plane orientation of the spinel crystal has particular crystallographic directions. And the precipitated crystals were Mg-Al spinels with a circular pyramidal shape on (along) atomic step. And the spinel which would pin of the moving step could obviously be observed by atomic force microscopy (AFM).
關鍵字(中) ★ 固溶析出
★ 微米晶體
★ 奈米晶體
★ 強化
★ 鎂鋁尖晶石
★ 氧化鋁單晶
關鍵字(英) ★ Sapphire
★ Spinel
★ Microcrystal
★ solution-precipitation
★ Nanocrystal
★ Strengthening
論文目次 摘要 ...........................................I
ABSTRACT......................................III
致謝............................................V
圖目錄.......................................VIII
表目錄..........................................X
符號說明.......................................XI
第一章 序論.....................................1
1-1 前言........................................1
1-2 材料簡介....................................2
1-2-1 氧化鋁單晶................................2
1-2-2鎂鋁尖晶石.................................3
1-3 研究動機....................................4
1-4 SAPPHIRE強化相關文獻回顧....................5
1-5 生長SPINEL晶體相關文獻回顧..................8
第二章 研究方法與實驗步驟......................23
2-1 SAPPHIRE強化之研究方法與步驟...............23
2-1-1熱處理(Heat Treatment)..................23
2-1-2 預壓應力膜(Compressive Coatings).......24
2-1-3 析出硬化(Precipitation Hardening)......25
2-1-4 摻雜質(Dopant)...........................26
2-2 SPINEL奈微米晶體生長之研究方法與實驗步驟...27
2-2-1 研究方法.................................28
2-2-2 實驗步驟.................................32
第三章 實驗設備與檢測方法......................36
3-1 SAPPHIRE強化實驗設備.......................36
3-1-1 LHPG晶體生長系統.........................36
3-1-2 濺鍍系統.................................37
3-1-3 高溫燒結爐...............................38
3-2 SAPPHIRE強化的檢測方法.....................39
3-2-1 平衡雙軸向破壞測試.......................39
3-2-2 材料檢測.................................39
3-3 SPINEL 奈微米晶體生長實驗設備..............40
3-4 SPINEL奈微米晶體生長檢測方法...............41
第四章 SAPPHIRE強化結果與討論..................45
4-1 熱處理之效果...............................45
4-2 SPINEL析出物之效果.........................47
4-2-1 析出物對強度之影響.......................47
4-2-2 析出物對穿透率之影響.....................50
4-3 氮氧化矽薄膜之效果.........................50
4-3-1 氮氧化矽薄膜之檢測.......................50
4-3-2 氮化矽膜之預壓應力的效果.................51
4-4 MG:SAPPHIRE晶纖之生長.....................53
4-4-1 對流與偏析現象...........................54
4-4-2不同提拉速率之晶纖生長....................56
4-4-3 不同摻雜濃度下之晶體生長.................57
4-4-4摻雜量對晶體強度之影響....................57
4-5 結論.......................................58
第五章SPINEL奈微米晶體之生長與現象觀察.........83
5-1 在蝕刻坑上生長之析出物.....................83
5-1-1 蝕刻坑(Etch pits)的產生..................83
5-1-2 析出微米晶體.............................83
5-1-3析出物的成分與生長方向....................84
5-2在階梯結構上生長之析出物....................85
5-2-1 階梯結構(Terrace-and-Step)的產生.......85
5-2-2 析出奈米晶體.............................86
5-2-3 階梯合併(Bunching)運動現象...............86
5-2-4 Pining 效應..............................87
5-3 結論.......................................88
第六章 總結論.................................104
參考文獻......................................107
發表之學術論文................................117
參考文獻 1. D. C. Harris, “Materials for infrared windows and domes” , SPIE, Washington, (1999).
2. J. A. Savage , “Reparation and properties of hard crystalline materials for Optical applications” , Journal of Crystal Growth 113 (1991) 698.
3. R. M. Sova , M. J. Linevsky , M. E. Thomas and F. F. Mark , “High-temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel” , Infrared Physics & Technology 39 (1998) 251.
4. B. Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath and P. M. Ajayan, “Organized assembly of carbon nanotubes” , Nature 416 (2002) 495.
5. M. K. Singh, P. P. Singh, E. Titus, D. S. Misra and F. LeNormand, “High density of multiwalled carbon nanotubes observed on nickel electroplated copper substrates by microwave plasma chemical vapor deposition” , Chemical Physics Letters 354 (2002) 331.
6. B. Rezek, C. E. Nebel and M. Stutzmann, “Polycrystalline silicon thin films by interference laser crystallization of amorphous silicon” , Japanese Journal of Applied Physics 38 (1999) L1083.
7. B. Rezek, C. E. Nebel and M. Stutzmann, “Laser beam induced currents in polycrystalline silicon thin films prepared by interference laser crystallization” , Japanese Journal of Applied Physics 91 (2002) 4220.
8. P. V. Santos, A. R. Zanatta, U. Jahn, A. Trampert, F. Dondeo and I. Chambouleyron, “Laser interference structuring of a-Ge films on GaAs” , Journal of Applied Physics 91 (2002) 2916.
9. S. Y. Chou, C. Keimel and J. Gu, “Ultrafast and direct imprint of nanostructures in silicon” , Nature 417 (2002) 835.
10. H. Tan, A. Gilbertson and S. Y. Chou, “Roller nanoimprint lithography” , Journal of Vacuum Science and Technology- Section B - Microelectronics Nanometer Structure 16 (1998) 3926.
11. S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Nanoimprint lithography” , Journal of Vacuum Science and Technology- Section B - Microelectronics Nanometer Structure 14 (1996) 4129.
12. S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution” , Science 272 (1996) 85.
13. S. K. Hong , B. J. Kim , H. S. Park , Y. Park , S. Y. Yoon and T. I. Kim , “Evaluation of nanopipes in MOCVD grown (0001) GaN/Al2O3 by wet chemical etching” , Journal of Crystal Growth 191 (1998) 275.
14. S. Nakamura , T. Mukai and M. Senoh , “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes” , Applied Physsics Letters 64 (1994) 1687.
15. K. Xu , J. Xu , P. Z. Deng , Y. Z. Zhou , G. G. Zhou , R. S. Qiu and Z. Fang , “Gamma;-LiAlO2 single crystal: a novel substrate for GaN epitaxy” , Journal of Crystal Growth 193 (1998) 127.
16. 余樹楨, “晶體之結構與性質” , 國立編譯館, 台北, (民國85年11月).
17. E. A. Marguire Jr. and R. L. Gentilman, “Press forging small domes of spinel”, American Ceramic Society Bulletin 60 (1981) 255.
18. D. W. Roy and J. L. Hastert, “Polycrystalline MgAl2O4 spinel for high temperature windows” , Ceramic Engineering and Science Proceedings l4 (1983) 502
19. B. V. Spitsyn, L. L. Bouilov and B. V. Deryagin, “Vapor growth of diamond on diamond and other surfaces” , Journal of Crystal Growth 52 (1981) 219.
20. P. A. Dennig and D. A. Stevenson, “Influence of substrate topography on the nucleation of diamond thin films” , Applied Physsics Letters 59 (1991) 1562.
21. P. A. Dennig, H. Shiomi and D. A. Stevenson, “Influence of substrate treatments on diamond thin film nucleation” ,Thin Solid Films 212 (1992) 63.
22. J. R. Cao, W. Kuang, Z. J. Wei, S. J. Choi, H. X. Yu, M. Bagheri, J. D. O'Brien and P. D. Dapkus, “Sapphire-bonded photonic crystal microcavity lasers and their far-field radiation patterns” , IEEE Photonics Technology Letters 17 (2005) 4.
23. W. Gobel, A. Nimmerjahn and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti : sapphire laser through a hollow-core photonic crystal fiber” , Optics Letters 29 (2004) 1285.
24. F. Schmid and D. C. Harris , “ Effects of crystal orientation and temperature on the strength of sapphire ” , Journal American Ceramic Society 81 (1998) 885.
25. D. C. Harris , F. Schmid , D. R. Black , E. Savrun and H. E. Bates , “Factors that influence mechanical failure of sapphire at high temperature” , SPIE Window and Dome Technologies and Materials V 3060 (1997) 226.
26. D. C. Harris , “Overview of progress in strengthening sapphire at elevated temperature” , SPIE Window and Dome Technologies and Materials VI 3705 (1999) 2.
27. E. Savrun , C. Toy , W. S. Scott and D. C. Harris , “The effect of titanium doping on the rhombohedral twinning of sapphire” , SPIE Window and Dome Technologies and Materials VI 3705 (1999) 28.
28. W. W. Chen and N.H. Harris, “Method of making thermal shock resistant sapphire for IR windows and domes” , U.S. Patent 5,702,654 (1997).
29. L. F. Johnson and M. B. Moran, “Compressive coatings for strengthened sapphire” , SPIE Window and Dome Technologies and Materials VI 3705 (1999) 130.
30. W. T. Li, D. R. Mckenzie, W. D. Mcfall and Q. C. Zhang, “Effect of sputtering-gas pressure on properties of silicon nitride films produced by helicon plasma sputtering” , Thin Solid Films 384 (2001) 46.
31. M. Serenyi, M. Racz and T. Lohner, “Refractive index of sputtered silicon oxynitride layers for antireflection coating” , Vacuum 61 (2001) 245.
32. E. Savrun , C. Toy , W. S. Scott and D. C. Harris , “Is sapphire inherently weak in compression at high temperatures ?” , SPIE Window and Dome Technologies and Materials VI 3705 (1999) 12.
33. F. Schmid, K. Schmid and C. P. Khattak, “High temperature compression and ring-on-ring testing of sapphire” , SPIE Window and Dome Technologies and Materials VI 3705 (1999) 17.
34. F. Schmid, K. Schmid, C.P.Khattak and P. R. Duggan, “Increasing the strength of sapphire by heat treatments” , SPIE Window and Dome Technologies and Materials VI 3705 (1999) 36.
35. C. J. Ting and H. Y. Lu, “Defect reactions and the controlling mechanism in the sintering of magnesium aluminate spinel” , Journal of the American Ceramic Society 82 (1999) 841.
36. L. Navias, “Preperation and properties of spinel made by vapor transport and diffusion in the system MgO-Al2O3” , Journal of the American Ceramic Society 44 (1961) 434.
37. H. Sieber, D. Hesse, X. pan, St. Senz and J. Heydenreich, “TEM investigations of spinel-forming solid state reactions: reaction mechanism, film orientation, and interface structure durning MgAl2O4 formation on MgO (001) and Al2O3 (11.2) single crystal substrates” , Zeitchrift fur anorganishe und allgemeine Chemie 622 (1996) 1658.
38. P. Kumar and K. H. Sandhage, “The fabrication of near net-shaped spinel bodies by the oxidative transformation of Mg/Al2O3 precursors” , Journal of Materials Research 13 (1998) 3423.
39. R. E. Carter, “Mechanism of solid-state reaction between magnesium oxide and alumina oxide and between magnesium oxide and ferric oxide” , Journal of the American Ceramic Society 44 (1961) 116.
40. W. P. Whitney II and V. S. Stubican, “Interdiffusion studies in the system MgO-Al2O3” , Journal of Physics and Chemistry of Solids 32 (1971) 305.
41. P. Zhang, T. Debroy and S. Seetharaman, “Interdiffusion in the MgO-Al2O3 spinel with or without some dopants” , Metallurgical and Materials Transactions 27A (1996) 2105.
42. K. J. D. Mackenzie and M. J. Ryan, “Effect of electric fields on solid-state reactions between oxides” , Journal of Materials Science 16 (1981) 579.
43. E. B. Watson and J. D. Price, “Kinetics of the reaction MgO + Al2O3 → MgAl2O4 and Al-Mg interdiffusion in spinel at 1200 to 2000℃ and 1.0 to 4.0 GPa” , Geochimica et Cosmochimmica Acta 66 (2002) 2123.
44. R. C. Rossi and R. M. Fulrath, “Epitaxial growth of spinel by reaction in the solid state” , Journal of the American Ceramic Society 64 (1963) 368.
45. D. X. Li, P. Pirouz, A. H. Heuer, S. Yadavalla and C. P. Flynn, “A high-resolution electron microscopy study MgO/Al2O3 interfaces and MgAl2O4 spinel formation” , Philosophical Magazine A 65 (1992) 406.
46. P. Kumar, S. A. Dregia and K. H. Sandhage, “Epitaxial growth of magnesia and spinel on sapphire during incongruent reduction in molten magnesium” , Journal of Materials Research 14 (1999) 3312.
47. C. M. Liu, J. C. Chen and C. J. Chen, “The growth of an epitaxial Mg-Al spinel layer on sapphire by solid-state reactions” , Journal of Crystal Growth 285 (2005) 275.
48. C. M. Liu, J. C. Chen and C. J. Chen, “The morphology of an epitaxial Mg-Al spinel layer on a sapphire surface” , Journal of Crystal Growth, in review.
49. T. Kubo and H. Nozoye, “Morphology and structure of Mg-Ti-O spinel (100) epitaxially grow on MgO(100): effect of solid state reactions” , Thin Solid Film 394 (2001) 151.
50. T. Kubo and H. Nozoye, “Physical properties of spinel nano-structure epitaxially grow on MgO (100)” , Applied Surface Science 188 (2002) 545.
51. N. Sugiyama, T. Tezuka and A. Kurobe, “Fabrication of nano-crystal silicon on SiO2 using the agglomeration process” , Journal of Crystal Growth 192 (1998) 395.
52. Y. Uehara, T. Fujita, M. Iwami and S. Ushioda, “Single NbO nano-crystal formation on low temperature annealed Nb (001) surface” , Surface Science 472 (2001) 59.
53. X. J. Guo, C. Y. Wen and H. C. Shih, “A new phase with nano-rod structure evolved from ferroelectric thin film” , Materials Letters 41 (1999) 215.
54. S. V. Yanina and C. Barry Cartera, “Precipitation from a reactive silicate on MgO” , Journal of Materials Research 17 (2002) 3056.
55. S.V. Yanina, Ph.D thesis, “Surface studies of ceramic materials” , Bell&Howell Information and Learning Company, Minnesota, USA.
56. A. Ismach, L. Segev, E. Wachtel and E. Joselevich, “Atomic-step-templated formation of single wall carbon nanotube patterns” , Angewandte Chemie International Edition 43 (2004) 6140.
57. A. Ismach, D. Kantorovich and E. Joselevich, “Carbon nanotube graphoepitaxy: highly oriented growth by faceted nanosteps” , Journal of the American Chemical Society 127 (2005) 11554.
58. J. C. Chen and C. Hu, “Measurement of the float-zone interface shape for lithium niobate” , Journal of Crystal Growth 149 (1995) 87.
59. J. C. Chen, Y. C. Lee and C. Hu, “Observation of the growth mechanisms of lithium niobate single crystal during a LHPG process” , Journal of Crystal Growth 174 (1997) 313.
60. Y. C. Lee and J. C. Chen, “The effect of temperature distribution on the barium titanate crystal growth in an LHPG system” , Optical Materials 12 (1999) 83.
61. 周國清, 徐軍, 鄭佩珍, 徐科, 周永宗, 于福熹, 朱人元, 田玉蓬, 蔣建華, 王洲光, “溫梯法Al2O3晶體位錯形貌分析” , 人工晶體學報 28:3 (1999).
62. F. Theodore , T. Duffar and F. Louchet, “Modelling plastic stress relaxation in shaped sapphire crystal growth ” , Journal of Crystal Growth 198/199 (1999) 232.
63. R. E. Reed-hill, “Physical metallurgy principles” , PWS Publishing Company, Boston, (1994), p534-535
64. J. G. John and G. J. William, in: J. C. Fisher, W. G. Johnston, R. Thomson and T. Vreeland, Jr.(Eds.), Dislocations and mechanical properties of crystal, John Wiley & Sons, Inc., New York, (1956), Chap. 1.
65. R. Scheuplein and P. Gibbs, “Surface structure in corundum. I. Etching of dislocations” , Journal of the American Ceramic Society 43 (1960) 458.
66. D. J. Barber and N. J. Tighe, “Observations of dislocations and durface features in corundum crystals by electron transmission microscopy” , Journal of Research of the National Bureau of Standards. 69A (1965) 271.
67. W. J. Alford and D. L. Stephens, “Chemical polishing and etching techniques for AL2O3 single crystals” , Journal of the American Ceramic Society 46 (1963) 193.
68. R. G. Vardiman, “The chemical polishing and etch pitting of sapphire” , Journal of the Electrochemical Society 118 (1971) 1804.
69. M. Tatsumi, I. Shinya and I. Mitsuru, “Dislocation etch pits on the (1-102) surface of sapphire crystals” , Japanese Journal of Applied Physics 15 (1976) 2011.
70. W. W. Mullins, “Theory of linear facet growth during thermal etching” , Philosophical Magazine 6 (1961) 1313.
71. A. J. W. Moore, “The influence of surface energy on thermal etching”, Acta Metallurgica 6 (1958) 293.
72. B. Chalmers, R. King and R. Shuttleworth, “The thermal etching of silver” , Proceedings of the Royal Society of London Series A193 (1948) 465.
73. R. J. Phaneuf and E. D. Williams, “Surface phase separation of vicinal Si(111)” , Physical Review Letters 58 (1987) 2563.
74. R. J. Phaneuf, N. C. Bartelt, E. D. Williams, W. Swiech and E. Bauer, “Low-energy electron-microscopy investigations of orientational phase separation on vicinal Si(111) surfaces” , Physical Review Letters 67 (1991) 2986.
75. J. R. Heffelfinger, M. W. Bench and C. B.Carter, “On the faceting of ceramic surfaces” , Surface Science 343 (1995) L1161.
76. J. R. Heffelfinger, M. W. Bench and C. B. Carter, “Steps and the structure of the (0001) a-alumina surface” , Surface Science 370 (1997) L168.
77. C. Herring, “Some theorems on the free energies of crystal surfaces” , Physical Review 82 (1951) 87.
78. J. S. Koehler, “Imperfections in nearly perfect crystals” , John Wiley and Sons, Inc., New York, (1952).
79. A. Granato and K. Lucke, “Theory of mechanical damping due to dislocations” , Journal of Applied Physics 27 (1956) 583.
80. M. Vivas and P. Lours, “Determination of precipitate strength in aluminium alloy 6056-T6 from transmission electron microscopy in situ straining date” , Philosophical Magazine A 76 (1997) 921.
81. D. Haussler, M. Bartsch, U. Messerschmidt and B. Reppich, “HVTEM in situ observations of dislocation motion in the oxide dispersion strengthened superalloy MA 754” , Acta Materialia 49 (2001) 3647.
82. S. J. Bennison and B. R. Lawn, “Role of interfacial grain-bridging sliding friction in the crack-resistance and strength properties of nontransforming ceramics” , Acta Metallurgica 37 (1989) 2659.
83. B. Budiansky, J. W. Hutchinson and A. G. Evans, “Matrix fracture in fiber-reinforced ceramics” , Journal of the Mechanics and Physics of Solids 34 (1986) 167.
84. Y. J. Kim, R. Tateno, T. Ikura, K. Matsuda and H. Kawai, “Electron cyclotron resonance (ECR) sputtered antireflection coatings on laser facets for optical memory applications” , Japanese Journal of Applied Physics 37 (1998) 2201.
85. W. Xu, B. Li, T. Fulimoto and I. Kojima, “Suppressing the surface roughness and columnar growth of silicon nitride films” , Surface and Coatings Technology 135 (2001) 274.
86. Y. L. Li, Y. Liang, F. Zheng, X.F. Ma, S.J. Cui and L. Sun, “Enhanced crystallization and phase transformation of amorphous silicon nitride under high pressure” , Journal of Materials Research 16 (2001) 67.
87. J. Szepvolgyi and I. Mohai, “Crystallization of an amorphous silicon nitride powder produced in a radiofrequency thermal plasma” , Ceramics International 25 (1999) 711.
88. C. P. Khattak and F. Schmid, “Growth of near-net-shaped sapphire domes using the heat exchanger method (HFM™)” , Materials Letters 7 (1989) 318.
89. F. Schmid, C. P. Khattak and D. M. Felt, “Producing large sapphire for optical applications”, American Ceramic Society Bulletin 73 (1994) 39.
90. R. Sarkar and G. Banerjee, “Effect of compositional variation and fineness on the densification of MgO–Al2O3 compacts” , Journal of the European Ceramic Society 19 (1999) 2893.
91. C. H. Chun, “Experiments on steady and oscillatory temperature distribution in a floating zone due to the marangoni convection” , Acta Astronautica 7 (1980) 479.
92. J. C. Chen and C. Hu, “Measurement of the surface temperature in the float zone of LiNbO3” , Journal of Crystal Growth 158 (1996) 289.
93. C. E. Chang and W. R. Wilcox, “Inhomogeneities due to thermocapillary flow in floating zone melting” , Journal of Crystal Growth 28 (1975) 8.
94. C. E. Chang and W. R. Wilcox, “Analysis of surface tension driven flow in floating zone melting” , International Journal of Heat and Mass Transfer 19 (1976) 355.
95. M. C. Flemings, “Solidification process” , McGraw-Hill, New York, (1974), p. 58-64.
96. W. A. Tiller, K. A. Jackson, J. W. Rutter and B. Chalmer, “The redistribution of solute atoms during the soilification of metals” , Acta Metallurgica 1 (1953) 428.
97. J. A. Burton, R. C. Prim and W. P. Slichter, “The distribution of solute in crystals grown from the melt. Part I. theoretical” , Journal of Chemical Physics 21 (1953) 1987.
98. W. G. Pfann, “Zone melting” , John Wiley & Sons, New York, (1958), p. 7-17.
99. D. T. J. Hurle, “Constitutional supercooling during crystal growth from stirred melt-I” , Solid-State Electronics 3 (1961) 37.
100.H. E. Labelle and A. I. Mlavsky, “Growth of sapphire filaments from the melt” , Nature 216 (1967) 574.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2006-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明