大學94學年度碩士班考試入學試題卷 所別:財務金融學系碩士班乙組科目:微積分

1. (20%) Integral can be valued using numerical methods of integration. In this question, please use different numerical methods to approximate the value of a definite integral.

Evaluate the integral $\int_1^2 \frac{1}{x^2} dx$, by dividing the interval [1, 2] into 4 subintervals using

- (a). (5%) Riemann sum;
- (b). (5%) the Trapezoidal rule;
- (c). (5%) the Simpson's rule;
- (d). (5%) the exact value of the definite integral

Round your answers to four decimal places.

- 2.~(20%) Please evaluate the following indefinite integrals:
 - (a). (10%) $\int \frac{1-\sqrt{x}}{1+\sqrt{x}} dx$
 - (b). (10%) $\int \frac{1}{x^2 \sqrt{4+x^2}} dx$
- 3. (15%) Please find the sum of the series:
 - (a). $(7\%) \sum_{n=0}^{\infty} \left[\left(\frac{2}{3} \right)^n \frac{1}{(n+1)(n+2)} \right]$ (b). $(8\%) \sum_{n=0}^{\infty} \frac{2^n}{3^n n!}$
- 4. (20%) Please evaluate the following integrals:
 - (a). (10%) $\int_0^4 \int_{\sqrt{x}}^2 dy dx$
 - (b). (10%) $\int_0^2 \int_y^{\sqrt{8-y^2}} \sqrt{x^2+y^2} dx dy$
- 5. (25%) The call option price at current time t=0 is $C_0=S_0N(d_1)-Ke^{-rT}N(d_2)$, where $d_{1}=\frac{\ln\left(\frac{S_{0}}{K}\right)+rT+\frac{1}{2}\sigma^{2}T}{\sigma\sqrt{T}}$, and $d_{2}=d_{1}-\sigma\sqrt{T}$. r,σ,T and K are constant. The function $N\left(x\right)$ is the probability that a standard normal random variable is less than x. For example, $N\left(a\right)$ is given by $N\left(a\right)=\int_{-\infty}^{a}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y^{2}}dy$. This question asks you to derive C_{0} , the price of a call option at current time t=0 using the integration method. You don't necessarily need to know the definition of a call option when deriving the formulae for C_0 . You just need to evaluate the following integral

$$C_0 = e^{-rT} \int_{-\infty}^{\infty} \max \left(S_0 e^{Y_T} - K, 0 \right) f(Y_T) dY_T$$

where Y_T is a normally distributed random variable with mean $=\left(r-\frac{1}{2}\sigma^2\right)T$, and variance = $\sigma^2 T$, and $f(Y_T)$ is the probability density function of random variable $Y_T \cdot S_0$ is a known constant at current time t = 0.

(Hint)(i) The probability density function of a normally distributed random variable z_T with mean= μ , and variance= σ^2 , is given by $f(z_T) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\left(\frac{z_T-\mu}{\sigma}\right)^2}$.

(ii) The function $\max{(a,b)}$ means taking the maximum value of the two arguments, that is $\max(a, b) = a \text{ if } a > b$