國立中央大學95學年度碩士班考試入學試題卷 共 2 頁 第 / 頁

所別:通訊工程學系碩士班 甲組(一般生) 科目:通訊系統

- 1. [16 pts.] Referring to Figure 1, an input n(t) to a filter with impulse response $h_1(t) = \sin c \ 2Wt = \frac{\sin 2\pi Wt}{2\pi Wt}$ is a nonbandlimited white Gaussian process with $E\{n(t)\} = 0$ and $E\{|n(t)|^2\} = \sigma^2$, where $E\{\}$ is the expectation operation.
 - (a) Find the mean of the output x(t). [3 pts.]
 - (b) Calculate the autocorrelation function of the output x(t). [4 pts.]
 - (c) Find the joint probability density function of the output x(t) at the time instants t_1 and t_2 . [4 pts.]
 - (d) If the spectral density of y(t) is $S_y(f) = \begin{cases} \alpha^2, & |f| < B \\ 0, & \text{otherwise} \end{cases}$ and B < W, please find the transfer function of the filter $h_2(t)$. [5 pts.]

$$n(t) \longrightarrow h_1(t) \xrightarrow{x(t)} h_2(t) \longrightarrow y(t)$$
Figure 1.

2. [16 pts.] The following Figure 2 is a single sideband (SSB) system,

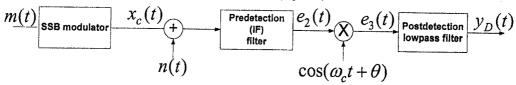
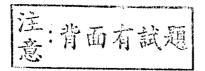



Figure 2.

where m(t) is the baseband message signal with a bandwidth W and average power P, and n(t) is an additive white Gaussian noise with double-sided power spectral density $N_0/2$.

- (a) If lower-sideband SSB is employed, please describe how you generate the lower-sideband SSB signal $x_c(t)$. [4 pt.]
- (b) What is the minimum required bandwidth of the predetection bandpass filter? [3 pts.]
- (c) Find the predetection SNR (measured at the output of the predetection IF filter). [4 pts.]
- (d) Find the postdetection SNR (measured at the output of the postdetection lowpass filter). [5 pts.]
- 3. [18 pts.] Please judge whether the statement is true or false and explain for your answer.
 - (a) No matter how close together we sample a bandlimited white Gaussian noise process, samples are independent. [6 pts.]
 - (b) If a random process with sample function $n(t) = A\cos(\omega_0 t + \varphi)$ where A and ω_0 is a constant and φ is a random variable with pdf $f(\varphi) = \begin{cases} 1/\pi, & |\varphi| \le \pi/2 \\ 0, & \text{otherwise} \end{cases}$, then the process n(t) is not an ergodic process. [6 pts.]
 - (c) Consider the analog signal $x_a(t) = 3\cos(2000\pi t) + 5\sin(6000\pi t) + 10\cos(12000\pi t)$. If we sample this signal using a sampling rate $f_s = 8kHz$ and $x(nT_s)$ is the sampled signal with $T_s = 1/f_s$, then we can reconstruct the signal $x_a(t)$ by using the ideal interpolation as $\frac{2B}{f_s} \sum_{n=-\infty}^{\infty} x(nT_s) \sin(2B(t-nT_s))$ if $B > f_s$. [6 pts.]

國立中央大學95學年度碩士班考試入學試題卷 # 2 頁 第 2 頁

所別:通訊工程學系碩士班 甲組(一般生) 科目:通訊系統

- 4. [20 pts.] Consider BPSK in symbol interval [0,T]. The signals $A\cos w_c t$ and $-A\cos w_c t$ are transmitted for the information bit b=1 and b=0, respectively. Assume the channel is the AWGN channel with double-sided power spectral density $N_0/2$. At the receiver, the matched filter with impulse response $h(t) = k \prod ((t-T/2)/T)\cos(2\pi f_c t)$ is used $\prod (t) = \begin{cases} 1, & |t| < 1/2 \\ 0, & \text{otherwise} \end{cases}$. Let E_b denote the energy per bit and v(t) denote the output signal of the matched filter. The value of k is chosen such that v(t) is equal to 1+N or -1+N, where N is a zero-mean random variable. The detected value of b at the receiver is denoted by b.
 - (a) Find the variance of N. [6 pts.]
 - (b) Determine the channel capacity (bits/symbol) if $\hat{b} = \begin{cases} 1, & v(T)>0 \\ 0, & \text{otherwise} \end{cases}$. [7 pts.]
 - (c) Determine the channel capacity (bits/symbol) for the following decision rule. If $-0.5 \le v(T) \le 0.5$, the received information is discarded; otherwise, $\hat{b} = \begin{cases} 1, & v(T) > 0.5 \\ 0, & v(T) < 0.5 \end{cases}$. Assume that E_b / N_0 is large enough such that the probability of $N \ge 1.5$ is almost equal to zero. [7 pts.]
- 5. [12 pts.] Consider 16-QAM with signal sets of the form $s_i(t) = a_i \cos w_c t + b_i \sin w_c t$, where $a_i, b_i \in \{\pm A, \pm 3A\}$.
 - (a) For transmission rate 4 bits/T, 16 signals in one symbol interval [0,T] are used with equal probability. Find the average energy **per bit**. [4 pts.]
 - (b) For transmission rate 3 bits/T, there are two choices: (1) choose 8 signals with the lowest average energy from 16-QAM in one symbol interval [0,T] (or [T,2T]). (2) choose 64 two-symbol signals with the lowest average energy (each two-symbol signal consists of one signal in [0,T] and one signal in [T,2T]) from all possible 256 two-symbol signals. To minimize average energy per bit, which one is preferred? Also find the minimum value of the average energy per bit. [8 pts.]
- 6. [18 pts.] Consider the modulation scheme with signals given as

$$s_i(t) = A_i \cos(w_c t + B_i)$$
, $0 \le t \le T$, $i=1,2,...,8$

where $B_i = \frac{\pi}{4}(i-1)$ and $A_i = \begin{cases} r_1, & i \text{ is odd} \\ r_2, & i \text{ is even} \end{cases}$ $(r_1 \le r_2)$. Note that when $r_1 = r_2$, this modulation is 8PSK.

- (a) Devise an optimal coherent detector, which minimizes the symbol error probability, and show the optimal decision region. [10 pts.]
- (b) Determine the value of $\frac{r_2}{r_1}$ such that the symbol error probability can be minimized for a given average energy. [8 pts.]