系所別: 通訊工程學系 甲

通訊系統

(10%) 1. X and Y are two independent random variables. X and Y have means and variances given as: E(X) = 1, E(Y) = 2, Var[X] = 3, Var[Y] = 4.

科目:

- (a) Compute Var[2X-3Y-1].
- (b) Compute Var[XY].
- (c) Compute correlation coefficient $\rho(Y-X,Y+X)$

- (a) Please express the spectrum Y(f) of y(t) in terms of f_0 , X(f) and sgn(f), where X(f) is the spectrum of x(t), which is lowpass with the bandwidth $B < f_0 = \frac{\omega_0}{2\pi}$.
- (b) Sketch Y(f) if X(f) is shown as in Figure 1.

Figure 1

(15%) **3.** An FM modulator has output $: x_c(t) = 50\cos[\omega_c t + 2\pi f_d \int_0^t m(\alpha) \partial \alpha]$, where $f_d = 25$ Hz/V. Assume that m(t) is the signal equal to $2\prod[\frac{1}{4}(t-2)] + 4\prod[\frac{1}{2}(t-6)]$, where $\prod(t) = \begin{cases} 1 & |t| < \frac{1}{2} \\ 0 & otherwise \end{cases}$

- (a) Determine the peak frequency deviation in hertz.
- (b) Determine the peak phase deviation in radians.
- (c) Determine the power at the modulator output.

(10%) **4.** Consider the system:
$$x(t) \to \bigoplus_{\uparrow} \to \begin{bmatrix} \widehat{\partial} \\ \widehat{\partial t} \end{bmatrix} \to \begin{bmatrix} Lowpass \\ filter \end{bmatrix} \to y(t)$$
. The signal $x(t)$ is defined by $n(t)$

 $x(t) = A\cos(2\pi f_c t)$ The lowpass filter has unit gain in the passband and bandwidth W, where $f_c < W$. The noise n(t) is white with two-sided power spectral density $N_0/2$. The signal component of y(t) is defined to be the component at frequency f_c . Determine the signal-to-noise ratio of y(t).

國立中央大學九十二學年度碩士班考試入學招生試題卷 共之頁 第之頁

系所別:

通訊工程學系 甲組 科目:

通訊系統

(30%) 5. 有 3 個銅板,假設第 $1 \cdot 2 \cdot 3$ 個銅板是正面的機率分別是 $1/3 \cdot 1/3 \cdot 1/2 \cdot$ 今告知您下列資 訊,請問第3個銅板是正面的機率爲多少?

請在下列答案中選出適當項目號碼,每小題答錯不倒扣,答案若爲其它請寫出應該多少。

項目號碼	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
答案	1/2	1/3	1/4	1/5	1/6	1/7	1/8	1/9	其它

- a). 全部銅板都是一樣花色(即正面或反面)。
- b) 有偶數個正面(包含零個)。
- c) 有1個正面、2個反面。

(10%) 6. We have two hypotheses for the observed data Z

Hypotheses H_0 Z = N (noise alone)

 $Pr(H_0 \text{ true})=1/4,$

Hypotheses H_1 Z = k + N (signal plus noise) $Pr(H_1 \text{ true}) = 3/4$.

Assume that the noise N is an added white Gaussian noise with zero mean and variance σ^2 . And k is a constant. Use the Bayes' criterion to find the threshold of Z for deciding whether Z belongs H_1 or H_0 .

請在下列答案中選出適當項目號碼,答錯不倒扣,答案若爲其它請寫出應該多少。

項目 號碼	(1)	(2)	(3)	(4)	(5)	(6)	(7)
答案	$\frac{k}{2}$	$\frac{k}{2} - \frac{\sigma^2}{k} \ln 3$	$\frac{k}{3} - \frac{\sigma^2}{k} \ln$	$\frac{k}{3}$	$\frac{k}{2} - \frac{\sigma^2}{k} \ln 2$	$\frac{k}{3} - \frac{\sigma^2}{k} \ln 3$	其它

(10%) 7. 有一接收機,其工作方式爲:連續收4個位元(bits)才決定訊號是1或0;其判斷方法是: 若 4 個位元中至少有 2 個 1,則決定訊號是 1,否則爲 0。若假設每個位元是 1 的機率爲 0.6,問此接收 機決定訊號是0的機率爲多少?

請在下列答案中選出適當項目號碼,答錯不倒扣,答案若爲其它請寫出應該多少。

項目 號碼	(1)	(2)	(3)	(4)	(5)	(6)	(7)
答案	0.2388	0.1928	0.1842	0.1768	0.1792	0.1898	其它

