

(4) (a) Please draw the equation
$$f(x,y,z) = 0$$
 in $x-y-z$ 3-dimension space, where $f(x,y,z) = 4(x^2+y^2)-z^2$. (5%)

- (b) Find the gradient of f(x, y, z) at a point P_0 , that is, $\nabla f(P_0)$, where $P_0 = (1, 0, 2)$; and explain what is the mathematic meaning of $\nabla f(P_0)$? (5%)
- (c) Find a unit normal vector N of the surface f(x, y, z) = 0 at P_0 . (5%)
- (d) Find the "Directional Derivative" of f at P_0 in the direction of N. (5%).

(5) (a) If A is partitioned as
$$A = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix}$$

where A_{11} and A_{22} are two square matrices, show that $det(A) = det(A_{11})det(A_{22})$, where det(A) denotes the "Determinant" of the matrix A. (5%)

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -6 & 5 \end{bmatrix}$$

and its eigenvalues; by the way, is $A^2 - 5A + 6I = 0$? where I is an Identity matrix. If yes, give the proof; if not, why?

15% 6. The bilateral Laplace transform of x(t) is defined as $X(s)=\int_{-\infty}^{\infty}x(t)e^{-st}dt$ and the inverse Laplace transform is given by $x(t)=\frac{1}{2\pi i}\int_{\sigma-i\infty}^{\sigma+i\infty}X(s)e^{st}ds$, where the contour of integration is a straight line parallel to the iw-axis in the complex s plane and is determined by any value of σ so that $X(\sigma+iw)$ converges.

Use the residue theorem to find the inverse Laplace transform x(t) of $X(s)=\frac{1}{(s+1)(s+2)}$ with the region of convergence (ROC) given as follows:

(i) $Re\{s\} < -2$, (ii) $Re\{s\} > -1$, and (iii) $-2 < Re\{s\} < -1$.

Note that $Re\{s\}$ represents the real part of s.

20% 7. The bilateral z-transform of a discrete sequence x[n] is defined as $X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$ and its inverse z-transform is given by $x[n] = \frac{1}{2\pi i} \{X(z)z^{n-1}dz\}$, where the contour is a counterclockwise closed circular contour in the complex z plane, centered at the origin and with radius r which can be chosen as any value for which X(z) converges.

Use the residue theorem to find the inverse z-transform x[n] of $X(z) = \frac{1}{1 - \frac{1}{d}z^{-1}}$ with

the region of convergence (ROC) given as follows: (i) |z| >1/4, and (ii) |z| < 1/4.

146