國立中央大學95學年度碩士班考試入學試題卷 共___頁 第/_頁

所別:電機工程學系碩士班 乙組(一般生)(學位在職生)科目:電子學 丙組(一般生) 丁組

1. 選擇題 (6分)

- 1-1 Which of the following statements is wrong for an ideal voltage amplifier? (A) an infinitely high input resistance, (B) an infinitely high output resistance, and (C) an infinitely high open-circuit voltage gain. (3 分)
- 1-2 Which of the following statements is wrong? (A) the forward-biased current of a *pn* diode increases as operating temperature increases, (B) the emitter-base capacitance (Cπ) is usually larger than the collector-base capacitance (Cμ) in a BJT amplifier, and (C) an emitter follower has an infinitely high output resistance. (3 分)

2. 計算題 (19分)

- 2-1 The NMOS transistor in the source-follower circuit of Fig. 1(a) has $g_m = 5$ mA/V and a very large r_0 . Find the open-circuit voltage gain (v_{o1}/v_i) and the output resistance (R_{o1}) . (6 分)
- 2-2 The NMOS transistor in the common-gate amplifier of Fig. 1(b) has $g_m = 5$ mA/V and a very large r_0 . Find the input resistance (R_0) and the voltage gain (v_0/v_0) . (6 %)
- 2-3 If the output of the source follower in Fig. 1(a) is connected to the input of the common-gate amplifier in Fig. 1(b), find the overall voltage gain v_o/v_i (7 %)

3. 計算題 (22分)

- 3-1 The circuit of Fig. 2(a) is a source follower with positive feedback. The transconductances of Q_1 and Q_2 are g_{m1} and g_{m2} , respectively. The capacitances C_{gs} and C_{gd} can be neglected. Also neglect output resistance r_0 and body effect. Calculate the input resistance R_{in} . (6 分)
- 3-2 The circuit of Fig. 2(b) is a common-source configuration with a resistive feedback, which can be used as an active inductor. Calculate the s-domain output resistance $Z_{out}(s)$ in terms of R_F , g_m , C_{gs} , and C_{gd} . (6 分)
- 3-3 The circuit of Fig. 2(c) is a gyrator which can be used as an active inductor. Assume that ideal op amps are applied in the circuit. Calculate the s-domain input impedance $Z_{in}(s)$. (10 %)

國立中央大學95學年度碩士班考試入學試題卷 共 ユ 頁 第 ユ 頁

所別:電機工程學系碩士班 乙組(一般生)(學位在職生)科目:電子學 <u>万組(一般生)</u> 丁組

4. 計算題 (18分)

A feedback circuit is shown in Fig. 3, which consists of a common-gate amplifier formed by Q_1 and R_D . The capacitive divider C_1 , C_2 senses the output voltage, applying the result to the gate of common-source transistor Q_f . The bias circuit for Q_f is not shown. The design parameters are illustrated as follows: $g_{mf} = 5$ mA/V, $g_{mf} = 1$ mA/V, $R_D = 10$ k Ω , $C_1 = 0.9$ pF, and $C_2 = 0.1$ pF. Assume that C_1 and C_2 are sufficiently small that their loading effect on the basic amplifier can be neglected. Also neglect output resistance r_0 and body effect.

- 4-1 Derive the expressions of the transimpedance gain V_o/I_s . (12 %)
- 4-2 Find the output resistance Rout. (6 分)

5. 計算題 (6分)

A sinusoidal oscillator is formed of an amplifier with a constant gain of 10 and a second-order bandpass filter. If this oscillator circuit produces sustained oscillations at 2 kHz, find

5-1 the pole frequency, (3 分)

5-2 the center-frequency gain of the filter. (3 分)

6. 計算題 (9分)

For the circuit in Fig. 4, the diodes are assumed to have a constant 0.6 V drop when conducting, and the op amplifier saturates at ± 10 V.

- 6-1 Sketch and label the transfer characteristic. (3 分)
- 6-2 What is the maximum diode current? (3 分)
- 6-3 If R_1 is eliminated and R_2 is short-circuited, sketch and label the transfer characteristic. (3 分).

7. 計算題 (20分)

For the high-voltage Wien-bridge oscillator with a nonlinear control network for amplitude, as shown in Fig. 5, find

- 7-1 the frequency of oscillation, (8 分)
- 7-2 the peak-to-peak amplitude of the ν_0 , by modeling each diode as a 0.7 V battery in series with a 100 Ω resistance when conducting. (12 α)

