博碩士論文 92323138 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.221.253.15
姓名 陳輝毓(Hui-Yi Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 外差光學式光柵干涉儀之研究
(Study of heterodyne grating interferometer)
相關論文
★ 以二維影像重建三維彩色模型之色彩紋理貼圖技術與三維模型重建系統發展★ 雷射干涉儀於共焦顯微系統之軸向定位控制
★ 偏振干涉術使用在量測旋光效應及葡萄糖濃度★ 準共光程干涉術之新式大尺度定位平台之研究
★ 波長調制外差散斑干涉術應用於角度量測之研究★ 全場光強差動式表面電漿共振偵測技術
★ 基於全內反射波長調制外差干涉術小角度測量★ 新型波長調制外差光源應用於位移量測
★ 疊紋式自動準直儀系統★ 雙影像多視角結構光轉三維點資料技術發展
★ 偏振式駐波干涉儀應用於位移量測★ 雙共焦顯微鏡用於物體厚度量測
★ 以電漿診斷工具進行太陽電池用矽薄膜製程開發★ 基於全反射共光程偏振干涉術之折射率量測技術
★ 點繞射干涉儀應用於透鏡之像差量測★ Gioia 和 Chakraborty 紊流摩擦係數模型之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文提出一種利用外差干涉術量測面內微小位移量的方法。外差干涉術是一種測量光相位變化的方法,它對於雜訊擾動有良好的抑制能力,而傳統的干涉儀的實際應用之中往往會受限於這一缺點。目前光干涉儀之位移監控大多利用不共光程的方式來達成,而外界環境的擾動將會造成監控上穩定度之困難。本文以外差干涉技術為基礎,設計一特殊的光學架構,量測光柵位移時所引入的相位變化,並且將經由鎖相放大器測得的相位變化換算為面內之位移量。當實驗中的環境雜訊很大時,鎖相放大器不易受到雜訊的影響,仍可量測到實驗中所需要的微小AC訊號,再經過內部的電路運算後將可獲得我們所需的相位差。由目前的理論計算結果與實驗量測實驗驗証,此技術的測量範圍可達1毫米,且其解析度可達1皮米。因為外差干涉術具有高靈敏度的優點,本技術同時具有高精確性及寬量測範圍,將可應用於高精密移動平台之位移及定位之感測等。
摘要(英) A heterodyne interferometry for measurement of the in-plane displacement is proposed. The measurement system includes a heterodyne light source, a moving grating and a lock-in amplifier for phase measurement. The in-plane displacement means that the direction of the measuring object displacement and the direction of the measuring
light beam become vertical relation each other. The phase variation, which resulted from the displacement of grating movement, is measured by the heterodyne interferometry, and it is converted into the small in-plane displacement. Proved by the present experiment, the measurement range is about 1 millimeter, and its resolution is about 1 picometer.This method has some advantages, such as high sensitivity, high accuracy and large measurement range. It can apply to sense the small displacement, localization of the platform with high-accuracy, and so on.
關鍵字(中) ★ 面內位移量測
★ 外差干涉術
★ 位移光柵
關鍵字(英) ★ Heterodyne Interferometry
★ In-plane displacemen
論文目次 摘要.............................................I
Abstract........................................II
誌謝...........................................III
目錄............................................IV
圖目錄.........................................VII
表目錄...........................................X
附錄............................................XI
第一章 緒論......................................1
1.1 前言.........................................1
1.2 文獻回顧.....................................2
1.3 研究目的.....................................4
1.4 論文架構.....................................5
第二章 外差干涉術基礎理論........................7
2.1 前言.........................................7
2.2 外差干涉術...................................7
2.3 移頻原理.....................................9
2.4 相位差的量測方式............................13
2.5 小結........................................18
第三章 光柵引入相位的理論與量測原理.............19
3.1 前言........................................19
3.2 都卜勒效應理論..............................19
3.3 光柵位移引入相位差的理論....................22
3.3.1 多狹縫繞射原理............................22
3.3.2 光柵位移所引入的光相位變化................29
3.4 小結........................................30
第四章 實驗結果.................................31
4.1 實驗原理與架構..............................31
4.2 實驗內容....................................38
4.2.1 量測一維大行程位移量並與HP 干涉儀比較的結果.....................38
4.2.2 量測一維小行程位移量並與HP 干涉儀比較的結果.....................44
4.2.3 量測一維位移量並與T25XYZ 實驗平台比較的結果.....................47
4.2.4 量測一維位移量並與PZT 比較的結果.....................50
4.2.5 量測二維行程位移量並與HP 干涉儀比較的結果.....................55
4.2.6 量測三維行程之位移量......................60
4.2.7 量測環境對量測系統影響的結果..............62
4.2.8 使用不同光柵線距的量測結果................62
4.3 討論........................................66
4.3.1 面內位移量測系統的靈敏度..................66
4.3.2 面內位移量測系統的誤差來源................66
4.4 小結........................................68
第五章 結論與未來展望...........................70
5.1 結論........................................70
5.2 未來展望....................................71
參考文獻........................................74
參考文獻 [1] S. Hosoe, “Highly precise and stable displacement-measuring laser interferometer with differential optical paths,” Prec. Eng., Vol. 17, P. 258-265, 1995.
[2] P. P. Naulleau, P. E. Denham, and S. Rekawa, “Design and implementation of a vacuum compatible laser-based subnanometer-resolution absolute distance measurement system,” Opt. Eng., Vol. 44(1), 013605, 2005.
[3] T. Qiu, L. S. Kuo, and H. C. Yeh, “A novel type of fiber optic displacement sensor based on Gaussian beam interference,” Opt. Commun., Vol. 234, P. 163-168, 2004.
[4] C. F. Kao, C. C. Chang, and M. H. Lu, Double-diffraction planar encoder by conjugate optics,” Opt. Eng., Vol. 44(2), 023603, 2005.
[5] T.W. Ng, “The optical mouse as a two- dimensional displacement
sensor,” Sensors and Actuators A, Vol. 107, P. 21-25, 2003.
[6] Y. Jourlin, J. Jay, and O. Parriaux, Compact diffractive interferometric displacement sensor in reflection,” Prec. Eng., Vol. 26, P. 1-6, 2002.
[7] X. Wang, X. Dong, J. Guo, and T. Xie, “Two-dimensional displacement sensing using a cross diffraction grating scheme,” J. Opt. A: Pure Appl. Opt., Vol. 6, P. 106-111, 2004.
[8] J. A. Gilbert, R. L. Shepherd, H. J. Cole, and P. R. Ashley, “Three-dimensional displacement measurement using diffractive
optic interferometry,” Opt. Eng., Vol. 36(12), P. 3336–3342, 1997.
[9] R. K. Heilmann, C. G. Chen, P. TKonkola, and M. L. Schattenburg, “Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders,” Nanotechnology, Vol. 15, P. 504-511, 2004.
[10] N. K. Mohan, and P. Rastogi, “Phase-shifting whole-field speckle photography technique for the measurement of in-plane deformations in real time,” Opt. Lett., Vol. 27, P. 565-567, 2002.
[11] R. S. Sirohi, “Speckle Metrology,” Marcel Dekker, New York, P. 349- 393, 1993.
[12] N. K. Mohan, J. S. Darlin, M. H. Majles Ara, M. P. Kothiyal, and R. S. Sirohi, “Speckle photography with BaTiO3 crystal for the
measurement of in-plane displacement field distribution of distant objects,” Optics and Lasers in Engineering, Vol. 29, P. 211-216,
1998.
[13] R. Tripathi, G.S. Pati, A. Kumar, and K. Singh, “In-plane displacement measurement using a photorefractive speckle correlator,” Opt. Commun., Vol. 149, P. 355-365, 1998.
[14] L. Salbut, “Waveguide grating (moiré) microinterferometer for inplane displacement/strain field investigation,” Opt. Eng., Vol. 41(3), P. 626-631, 2002.
[15] L. Salbut, and M. Kujawiñska, “Grating microinterferometer for local in-plane displacement/strain fields analysis,” Proc. SPIE, Vol. 3407, P. 490-494, 1998.
[16] Y. Wang, Q. Wang, P. Li, J. Lan, and K. Guo, “Photorefractive holographic interferometry for the measurement of object tilt and in-plane displacement,” Proc. SPIE, Vol. 4292, P. 230-236, 2002.
[17] T. E. Carlsson, J. Gustafsson, and N. H. Abramson, “Method for fringe enhancement in holographic interferometry for measurement
of in-plane displacements,” Proc. SPIE, Vol. 37, P. 1845-1848, 1998.
[18] H. J. Wang, J. Y. Chen, C. M. Liu, and L. W. Chen, “Phase-shifting moiré interferometry based on a liquid crystal phase modulator,”
Opt. Eng., Vol. 44(1), P. 015602, 2005.
[19] S. T. Lin, “Three-dimensional displacement measurement using a newly designed moiré interferometer,” Opt. Eng., Vol. 40(5), P.
822-826, 2001.
[20] Y. Arai, and S. Yokozeki, “In-plane displacement measurement using ESPI based on spatial fringe analysis method,” Proc. SPIE,
Vol. 4778, P. 269-276, 2002.
[21] 陳光鑫, 林振華, “光電子學,” 全華科技圖書股份有限公司, P. 11-6, 2000.
[22] M. Mansuripur, “Classical Optics and its Applications,” University Press, Cambridge, P. 471-472, 2002.
[23] D. C. Su, M. H. Chiu, and C. D. Chen, “Simple two frequency laser,” Prec. Eng., Vol. 18, P. 161-163, 1996.
[24] Stand Research Systems, “DSP Lock-In Amplifier model SR850,” P. 3-5.
[25] 安毓英, 曾小東, “光學感測與測量,” 五南圖書出版公司, P. 499-508, 2004.
[26] T. A. Riener, A. C. Goding, and F. E. Talke, “Measurement of Head/Disk Spacing Modulation Using A Two Channel Fiber Optics Laser Doppler Vibrometer,” IEEE Trans. Magns., Vol. 24, P.
2745–2747, 1988.
[27] K.Wang, and L.Zeng, “Double-grating frequency shifter for low-coherence heterodyne interferometry,” Opt. Commun., Vol. 251,
P. 1-5, 2005.
[28] M. G. Moharam, and T. K. Gaylord, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE, Vol. 73, P. 894–937,
1985.
[29] C. M. B. Cordeiro, L. Cescato, A. A. Freschi, and L. Li, “Measurement of phase differences between the diffracted orders of
deep relief gratings,” Opt. Lett., Vol. 28, P. 683-685, 2003.
[30] K. D. Moller, “Optics,” University Science Books, Mill Valley, California, 1988.
[31] J. Y. Lee, and D. C. Su, “Common-path heterodyne interferometric detection scheme for measuring wavelength shift,” Opt. Commun.,
Vol. 162, P. 7-10, 1999.
[32] J. Y. Lee, and D. C. Su, “Improved common-path optical heterodyne interferometer for measuring small optical rotation angle of chiral
medium,” Opt. Commun., Vol. 256, P. 377-341, 2005.
[33] USER’S GUIDE, “Intelligent Picomotor ™ Control Modules,” NEW FOCUS, Inc., P. 17.
[34] R. C. Quenelle, “Nonlinearity in interferometer measurements,” Hewlett Packard J., Vol. 34, P. 10-12, 1983.
[35] C. M. Sutton, “Nonlinearity in length measurements using heterodyne laser Michelson interferometry,” J. Phys. E, Vol. 20, P.
1290-1292, 1987.
[36] C. M. Wu, “Heterodyne interferometric system with subnanometer accuracy for measurement of straightness,” Appl. Opt., Vol. 43, P. 3812-3816, 2004.
[37] Y. Ohtsuka, and K. Itoh, “Two-frequency laser interferometer for small displacement measurements in a low frequency range,” Appl.
Opt., Vol. 18, P. 219-224, 1979.
[38] C. M. Wu, J. Lawall, and R. D. Deslattes, “Heterodyne interferometer with subatomic periodic nonlinearity,” Appl. Opt., Vol. 38, P. 19, 1999.
[39] C. M. Wu, J. Lawall, and R. D. Deslattes, “Periodic nonlinearity resulting from ghost reflections in heterodyne interferometry,” Opt.
Commun., Vol. 215, P. 17-23, 2003.
[40] M. H. Chiu, J. Y. Lee, and D. C. Su, “Complex refractive-index measurement based on Fresnel’s equations and the uses of heterodyne interferometry,” Appl. Opt., Vol. 38, P. 4047- 4052, 1999.
[41] X. Liu, W. Clegg, D. F. L. Jenkins, and B. Liu, “Polarization Interferometer for Measuring Small Displacement,” IEEE Trans. Meas., Vol. 50, P. 868–871, 2001.
指導教授 李朱育(Ju-Yi Lee) 審核日期 2006-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明