博碩士論文 946201008 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.145.151.202
姓名 毛又玉(You-Yu Mao)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 台灣北部地區層狀與對流降水的雨滴粒徑分布特性
相關論文
★ 宜蘭地區秋冬季降雨特性之研究★ 台灣地區午後對流降水特性之分析
★ 台灣梅雨季中尺度對流系統之數值模擬研究-TAMEX IOP 8 個案★ 利用整合探空系統分析南海北部大氣邊界層特性之研究
★ 中尺度波譜模式對梅雨期豪雨個案模擬之研究★ 宜蘭地區秋冬季豪大雨特性之研究
★ 台灣東南部地區局部環流與邊界層特性之研究★ 台灣東南部地區複雜地形局部環流的模擬研究
★ 宜蘭地區豪雨個案之研究★ 台灣北部地區雨滴粒徑分佈特性與降雨估計之探討
★ 冬季雹暴個案之分析與模擬★ 伴隨敏督利颱風的強烈西南氣流引發豪大雨之個案探討
★ 利用整合探空系統分析台灣東南部地區大氣邊界層特性之研究★ 桃芝颱風(2001)數值模擬研究:颱風路徑與結構之模擬與分析
★ 利用雨滴譜儀分析不同降水系統之微物理特性研究★ 台灣北部地區不同季節以及不同降水型態的雨滴粒徑分布特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 層狀與對流降水的形成原因與垂直的熱力結構皆有所不同,造成雨滴粒徑分布特性的差異,同時也對雲模式的參數化有影響。雨滴粒徑分布可決定回波強度、降雨率、液態水含量等降雨積分參數,因此研究層狀與對流降水型態下的雨滴粒徑分布能對降水特性有更多的了解。本研究使用位於中央大學的光學式雨滴譜儀,及五個撞擊式雨滴譜儀:中央、石門、南港、翡翠、霞雲等站,分析2005~2006年大雨事件中,層狀與對流降水的雨滴粒徑分布特性。
本研究使用Tokay and Short (1996)的N0-R關係式區分層狀與對流降水。研究結果顯示,經過標準化後的雨滴粒徑分布能明顯的看出層狀與對流降水的差異,層狀降水的雨滴粒徑分布較接近指數型態,小雨滴的數量比較多;對流降水在小雨滴數量的部份則比層狀降水減少許多。而在降雨率相同的情況下,層狀降水的雨滴粒徑大於對流降水。兩種降水在雨滴粒徑分布上的差異進而影響到各雨滴粒徑分布參數及降雨積分參數的不同。整體而言,對流降水的μ、Λ、N0、Dm、Nw等參數都比層狀降水來得大。將各站的層狀與對流降水的Nw-Dm關係與Bringi et al. (2003)做的統計相比較,發現台灣北部地區的對流降水分布偏向海洋性對流降水,但降雨率大於20 mm/hr時則介於海洋性對流及大陸性對流之間,而北部地區的層狀降水分布則與國外的層狀分類一致。Z-R關係式中的係數A、b在經過標準化後,b可定義為一個常數,而A與降雨率R幾乎為一對一的關係。
分析颱風與梅雨個案後發現,不論是哪種天氣型態,在分類層狀及對流降水後的μ、Λ、Dm、Nw等參數的變化很類似。但在對流降水時,颱風個案的各參數值的變化又比梅雨個案的參數變化幅度來得大。而兩個個案的層狀降水時的各種參數變化則很穩定。
摘要(英) The formation mechanism and vertical thermal structure of stratiform and convective precipitation are different. It affects not only the characteristics of drop size distribution (DSD), but also the parameterization of cloud model. The DSD can be used to determine rainfall integer parameters including rainfall rate, liquid water content, and reflectivity factor, etc. This study used DSD data collected with five Joss-Waldvogel disdrometers (i.e. NCU, Feitsui, Nankang, Suiman, Shiyun), and a 2D-Video disdrometer in NCU, to investigate heavy rain events occurred during 2005 to 2006. And then use the intercept parameter N0 and rainfall rate to classify precipitation type into two categories: stratiform and convective.
The normalized DSDs are distinct difference between stratiform and convective. The shape of DSD in stratiform is near exponential, and have more small raindrops, but there are less small raindrops in convective. At the same rainfall rate, stratiform has larger drop spectrum than convective. The DSD parameters and integral rainfall parameters are also different in these two rainfall types. Overall, the parameters of μ, Λ, N0, Nw, and Dm in convective type rainfall are greater then those of stratiform. Having compared Nw-Dm of stratiform and convective precipitation with the statistic results of Bringi et al. (2003), we found that the pattern of stratiform in northern Taiwan agreed well. The pattern of convective type is near the maritime-like cluster, but when rainfall rate is greater than 20 mm/hr, the pattern is between maritime and continental-like cluster. After normalized, the b parameters of Z-R relation can be defined as constant, and parameter A almost has one-to-one relation with rainfall rate R.
Case study on Typhoon and Mei-yu, we found that no matter what type it is, the variation of parameters (i.e. μ, Λ, Dm , Nw) are similar when rainfall are classified to stratiform and convective types. In convective precipitation, the variation of parameters of Typhoon case is greater than Mei-yu case. However, the variations of stratiform parameters in both cases are stable.
關鍵字(中) ★ 雨滴粒徑分布 關鍵字(英) ★ drop size distribution
論文目次 摘要………………………………………………………………………i
Abstract………………………………………………………………………ii
致謝………………………………………………………………………iv
目錄………………………………………………………………………v
圖表說明…………………………………………………………………vii
第一章 序論……………………………………………………………………1
1.1 前言……………………………………………………………………1
1.2 文獻回顧………………………………………………………………1
1.3 研究背景及動機………………………………………………………4
第二章 資料來源及分析方法…………………………………………………5
2.1 資料來源………………………………………………………………5
2.2 儀器介紹………………………………………………………………5
2.2.1 撞擊式雨滴譜儀……………………………………………………5
2.2.2 光學式雨滴譜儀……………………………………………………6
2.3 雨滴粒徑分布計算………………………………………………6
2.3.1 撞擊式雨滴譜儀……………………………………………………6
2.3.2 光學式雨滴譜儀……………………………………………………7
2.4 Gamma DSD之計算…………………………………………………7
2.5 Z-R關係式…………………………………………………………9
2.6 Normalized Gamma DSD之計算…………………………………10
2.7 標準化的Z-R關係式………………………………………………11
2.8 分類層狀與對流降水形態的方法…………………………………12
第三章 層狀與對流降水型態的雨滴粒徑分布…………………………….14
3.1 雨滴粒徑分布………………………………………………………14
3.2 標準化後的雨滴粒徑分布…………………………………………15
3.3 區分降水型態之DSD參數………………………………………15
3.3.1 Gamma DSD參數 – N0…………………………………………15
3.3.2 Normalized Gamma DSD參數 – Nw……………………………16
3.3.3 Gamma DSD參數 – Dm…………………………………………16
3.3.4 Gamma DSD參數 – μ、Λ………………………………………16
3.4 Gamma DSD參數的比較………………………………………...17
3.4.1 Gamma DSD參數 – μ、Λ………………………………………17
3.4.2 Normalized Gamma DSD參數 – Dm、Nw....................................17
3.4.3 降雨積分參數Z-R………………………………………………..18
第四章 個案討論…………………………………………………………...20
4.1 2005年7月17~19日 海棠颱風………………………………...20
4.1.1 個案概述………………………………………………………….20
4.1.2 雨滴粒徑分布隨時間的變化…………………………………….21
4.1.3 Gamma DSD參數與Z、R的比較……..……………………….22
4.2 2007年6月8日 梅雨個案……………………………………...23
4.2.1 個案概述………………………………………………………….23
4.2.2 雨滴粒徑隨時間及空間的變化………………………………….24
4.2.3 Gamma DSD參數與Z、R的比較……………………………...24
第五章 結論與展望………………………………………………………...26
5.1 結論………………………………………………………………..26
5.2 未來展望…………………………………………………………..28
參考文獻…………………………………………………………………….29
表…………………………………………………………………………….33
圖………….…………………………………………………………………….36
參考文獻 吳舜華,2006:利用雨滴譜儀分析不同降水系統之微物理特性研究,國立中央大學碩士論文,100頁。
林位總,2004:利用二維雨滴譜儀研究雨滴譜特性,國立中央大學碩士論文,89頁。
許玉金,2005:台灣北部地區雨滴粒徑分布特性與降雨估計之探討,國立中央大學碩士論文,89頁。
張偉裕, 2002: 利用雨滴譜儀分析雨滴粒徑分布(納莉颱風個案), 國立中央大學碩士論文,95頁。
蔣孟良,2005:利用雨滴譜儀分析不同降雨系統之雨滴粒徑分布,文化大學碩士論文,89頁。
簡巧菱,2006:台灣北部地區不同季節以及不同降水型態的雨滴粒徑分布特性,國立中央大學碩士論文,119頁。
Atlas, D., and C. W. Ulbrich, 1977: Path-and area-integrated rainfall measurement by microwave attenuation in the 1-3 cm band. J. Appl. Meteor., 16, 1322-1331.
Brands, E. A., G. Zhang, and J. Vivekanandan, 2003: An evaluation of a drop distribution-based polarimetric radar rainfall estimator. J. Appl. Meteor., 42, 652-660.
Bringi, V. N.,V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regime from disdrometer and dual-polarized radar analysis. J. Atmos. Sic., 60, 354-365.
Chen, C. S., and Y. L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 1323-1341.
Cifelli, R., C. R. Williams, D. K. Rajopadhyaya, S. K. Avery, K. S. Gage, and P. T. May, 2000: Drop-size distribution characteristics in tropical mesoscale convective systems. J. Appl. Meteor., 39, 760-777.
Gamache, J. F., and R. A. Houze, 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118-135.
Gunn, R. and G. D. Kinzer, 1949: The terminal velocity of fall for droplets in stagnant air. J. Meter., 6, 243-248.
Huggel, A., W. Schmid, and A. Waldvogel, 1996: Raindrop size distributions and the radar bright band. J. Appl. Meteor., 35, 1688-1701.
Johnson, R. H., and P. J. Hamilton, 1988: The relationship of surface features to the precipitation and air flow structure of an intense midlatitude squall line. Mon. Wea. Rev., 116, 1444-1472.
Jorgensen, D. P., and P. T. Willis, 1982: A Z-R relationship for hurricanes. J. Appl. Meteor. 21, 356-366.
Kozu, T., and K. Nakamura, 1991: Rainfall parameter estimation form dual-radar measurements combining reflectivity profile and path-integrated attenuation. J. Atmos. Oceanic Technol., 8, 259-270.
Maki, M., T. D. Keenan, Y. Sasaki, and K. Nakamura, 2001: Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia. J. Appl. Meteor., 40, 1939-1412.
Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165-166.
Testud J., S. Qury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “Normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 1118-1140.
Tokay A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355-371.
____, A. Kruger, and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor. 40, 2083-2097.
____, D. A. Short, C. R. Williams, W. L. Ecklund, K. S. Gage, 1999: Tropical rainfall associated with convective and stratiform clouds: Intercomparison of disdrometer and profiler measurements. J. Appl. Meteor. 38, 302-320.
Ulbrich, C. W, 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 1764-1775.
____, and D. Atlas, 1998: Rainfall microphysics and radar properties: Analysis methods for size spectra. J. Appl. Meteor. 37, 912-923.
Vivekanandan, J., G.. Zhang, and E. Brandes, 2004: Polarmetric radar estimators based on a constrained gamma drop size distribution model. J. Appl. Meteor. 43, 217-230.
Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31, 1067-1078.
Williams, C. R., W. L. Ecklund, and K. S. Gage, 1995: Classification of precipitation clouds in the tropics using 915-MHz wind profilers. J. Atmos. Oceanic Technol., 12, 996-1012.
指導教授 林沛練(Pay-Liam Lin) 審核日期 2007-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明