參考文獻 |
References
Belcher, J. W., and L. Davis, Jr. (1971), Large-amplitude Alfvenic waves in the interplanetary medium, J. Geophys. Res., 76, 3534.
Blumen, W. (1970), Shear layer instability of an inviscid compressible fluid, J. Fluid Mech., 40, 769.
Blumen, W., P. G. Drazin, and D. F. Billings (1975), Shear layer instability of an inviscid compressible fluid. Part 2, J. Fluid Mech., 71, 305.
Chandrasekhar, S. (1961), Hydrodynamic and Hydromagnetic Stability, Oxford Univ. Press, New York.
Chao, J. K., L. H. Lyu, B. H. Wu, A. J. Lazarus, T. S. Chang, and R. P. Lepping (1993), Observations of an intermediate shock in interplanetary space, J. Geophys. Res., 98, 17,443.
Chen, S. H., and M. G. Kivelson (1993), On nonsinusoidal waves at the Earth's magnetopause, Geophys. Res. Lett., 20, 2699.
Chen, S. H., and M. G. Kivelson, J. T. Gosling, R. J. Walker, and A. J. Lazarus (1993), Anomalous aspects of magnetosheath flow and of the shape and oscillations of the magnetopause during an interval of strongly northward interplanetary magnetic field, J. Geophys. Res., 98, 5727.
Chacon, L., D. A. Knoll, and J. M. Finn (2003), Hall MHD effects on the 2D Kelvin-Helmholtz/tearing instability, Physics Letters A, 308, Issue 2-3, pp. 187-197.
Diego, P., M. Storini, M. Parisi, and E. G. Cordaro (2005), AE index variability during corotating fast solar wind streams, J. Geophys. Res., 110, A06105,
doi: 10.1029/2004JA010715.
Drazin, P. G., and A. Davey (1977), Shear layer instability of an inviscid compressible fluid. Part 3, J. Fluid Mech., 82, 255.
Fairfield, D. H., A. Otto, T. Mukai, S. Kokubun, R. P. Lepping, J. T. Steinberg, A. J. Lazarus, and T. Yamamoto (2000), Geotail observations of the Kelvin-Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields, J. Geophys. Res., 105, A9, pp. 21159-21174.
Fairfield, D. H., C. J. Farrugia, T. Mukai, T. Nagai, and A. Fedorov (2003), Motion of the dusk flank boundary layer caused by solar wind pressure changes and the Kelvin-Helmholtz instability: 10-11 January 1997, J. Geophys. Res., 108, A12, pp. SMP 20-1, CiteID 1460, doi: 10.1029/2003JA010134.
Fu, Z. F., L. C. Lee and J. D. Huba (1986), A quasi-local theory of the instability in the ionosphere, J. Geophys. Res., 91, A3, pp. 3263-3269.
Kantrowitz, A., and H. E. Petschek, MHD characteristics and shock waves, in Plasma Physics in Theory and Application, edited by W. B. Kunkel, p.148, McGraw-Hill Inc., New York, 1966.
Lai, S. H., and L. H. Lyu (2006), Nonlinear evolution of the MHD Kelvin-Helmholtz instability in a compressible plasma, J. Geophys. Res., 111, A01202, doi:10.1029/2004JA010724.
Lau, Y. Y., and C. S. Liu (1980), Stability of shear flow in a magnetized plasma, Phy. Fluids, 23, 939.
Lin, M. D. (1996), A Study of Kelvin-Helmholtz Instability at the Dayside Magnetopause, Master thesis, National Central University, Chung-Li, Taiwan.
Lyu, L. H. (1994), Solar Wind-Magnetosphere Coupling, Natl. Sci. Coun. Report, NSC grant: NSC82-0202-M-008-044.
Lyu, L. H. (1995), Solar Wind-Magnetosphere Coupling, Natl. Sci. Coun. Report, NSC grant: NSC83-0202-M-008-032.
Lyu, L. H. (1997), A Study of Magnetospheric Substorm, Natl. Sci. Coun. Report, NSC grant: NSC-85-2612-M-008-006.
Lyu, L. H. (1998), A Study of Magnetospheric Substorm, Natl. Sci. Coun. Report, NSC grant: NSC-86-2111-M-008-002.
Lyu, L. H., and J. R. Kan (1989), Nonlinear two-fluid hydromagnetic waves in the solar wind: Rotational discontinuity, soliton, and finite-extent Alfven wave train solutions, J. Geophys. Res., 94, 6523.
Lyu, L. H., and W. H. Tsai (1998), A Study of Alfvénic Turbulence in the Solar Wind, Natl. Sci. Coun. Report, NSC grant: NSC-87-2111-M-008-001.
Manuel, J. R., and J. C. Samson (1993), The spatial development of the low-latitude boundary layer, J. Geophys. Res., 98, A10, pp. 17,367-17,385.
Mavromichalaki, H., X. Moussas, J. J. Quenby, J. F. Valdes-Galicia, E. J. Smith, and B. T. Thomas (1988), Relatively stable, large-amplitude Alfvenic waves seen at 2.5 and 5.0 AU, Solar Phys., 116, 377.
Miura, A. (1982), Nonlinear evolution of the magnetohydrodynamic Kelvin-Helmholtz instability, Phys. Rev. Lett., 49, No. 11, pp. 779-782.
Miura, A. (1984), Anomalous transport by magnetohydrodynamic Kelvin-Helmholtz instabilities in the solar wind-Magnetosphere interaction, J. Geophys. Res., 89, A2, pp. 801-818.
Miura, A. (1987), Simulation of Kelvin-Helmholtz instability at the magnetospheric boundary, J. Geophys. Res., 92, A4, pp. 3195-3206.
Miura, A. (1990), Kelvin-Helmholtz instability for supersonic shear flow at the magnetospheric boundary, Geophys. Res. Lett., 17, No. 6, pp. 749-752.
Miura, A. (1992), Kelvin-Helmholtz instability at the magnetospheric boundary - Dependence on the magnetosheath sonic Mach number, J. Geophys. Res., 97, A7, pp. 10,655-10,675.
Miura, A. (1995), Kelvin-Helmholtz instability at the magnetopause: Computer simulations, in Physics of the Magnetopause, AGU Monogr. Ser., 90, edited by P. Song, B. U. O. Sonnerup, and M. F. Thomsen, pp. 285-291, AGU, Wahington, D. C.
Miura, A. (1997), Compressible magnetohydrodynamic Kelvin-Helmholtz instability with vortex pairing in two-dimensional transverse configuration, Phys. Plasmas, 4, No. 8, pp. 2871-2885.
Miura, A. (1999), Self-organization in the two-dimensional magnetohydrodynamic transverse Kelvin-Helmholtz instability, J. Geophys. Res., 104, A1, pp. 395-412.
Miura, A., and P. L. Pritchett (1982), Nonlocal stability analysis of the MHD Kelvin-Helmholtz instability in a compressible plasma, J. Geophys. Res., 87, 7431.
Nakamura, T. K., D. Hayashi, M. Fujimoto, and I. Shinohara (2004), Decay of the MHD-scale Kelvin-Helmholtz vortices mediated by parasitic electron dynamics, Phys. Rev. Lett., 92, Issue 14, id. 145001.
Neugebauer, M., and B. Buti (1990), A search for evidence of the evolution of rotational discontinuities in the solar wind from nonlinear Alfven waves, J. Geophys. Res., 95, 13.
Ogilvie, K. W., and R. J. Fitzenreiter (1989), The Kelvin-Helmholtz instability at the magnetopause and inner boundary layer surface, J. Geophys. Res., 94, 15,113.
Otto, A., and D. H. Fairfield (2000), Kelvin-Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations, J. Geophys. Res., 105, 21,175.
Papamoschou, D., and A. Roshko (1988), The compressible turbulent shear layer: an experimental study, J. Fluid Mech., 197, pp. 453-477.
Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1988), Numerical Recipes, Cambridge University Press, Cambridge.
Pu, Z. Y., and M. G Kivelson (1983), Kelvin-Helmholtz instability at the magnetopause: Energy flux into the magnetopause, J. Geophys. Res., 88, 853.
Richtmyer, R. D., and K. W. Morton (1967), Difference Methods for Initial-Value Problems, 2nd edition, John Wiley & Sons, Inc., New York.
Spreiter, J. R., A. L. Summers, and A. Y. Alksne (1966), Hydromagnetic flow around the magnetosphere, Planet. Space Sci., 14, pp. 223-253.
Thomas, V. A. (1995), Kinetic simulation of Kelvin-Helmholtz instability in a finite sized jet, J. Geophys. Res., 100, A7, pp. 12,011-12,016.
Thomas, V. A., and D. Winske (1993), Kinetic simulations of the Kelvin-Helmholtz instability at the magnetopause, J. Geophys. Res., 98, A7, pp. 11,425-11,438.
Wu, C. C. (1986), Kelvin-Helmholtz instability at the magnetopause boundary, J. Geophys. Res., 91, A3, pp. 3042-3060. |