博碩士論文 90223039 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.142.132.123
姓名 蔡亦媛(Yi-Yuan Tsai)  查詢紙本館藏   畢業系所 化學學系
論文名稱 表面修飾之中孔洞分子篩填充於固態高分子電解質之研究
(Cross-linked composite polymer electrolyte using surface modified mesoporous silica MCM-41)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以(3-glycidyloxypropyl)trimethoxysilane (GLYMO)對中孔洞分子篩MCM-41進行表面修飾,並利用X光粉末繞射儀以及固態核磁共振儀鑑定其化學結構。另外,將經修飾後的中孔洞分子篩MCM-41以不同比例摻混於高分子與鋰鹽 (PEO/LiClO4) 的系統中,得到複合式高分子電解質。利用交流阻抗分析儀、X光粉末繞射儀、微差式熱分析儀、掃描式顯微鏡以及多核固態核磁共振儀對此系統進行鑑定與分析。
這些分析結果顯示在摻混少量修飾後的中孔洞分子篩 (5 wt% G-MCM-41) 於固態高分子電解質中,因為高分子與經表面修飾的MCM-41的環氧環 (epoxy ring) 進行交聯反應,使得高分子與中孔洞分子篩相容性 (Compatibility) 增加。所以在<60oC時,導電度有明顯地上升。
而當摻混高比例的G-MCM-41於固態高分子電解質中,導電度反而下降。這是因為填充物扮演阻礙鋰離子運動的角色,使得鋰離子運動變差。在微差式熱分析儀的結果中顯示高分子鏈段的運動性和非結晶相的比例,受到G-MCM-41的影響,因而增加高分子鏈段的運動並降低結晶相的比例。以路易士酸-鹼之間的作用力解釋聚氧化乙烯鏈鍛 (PEO chain) 、G-MCM-41和鋰鹽 (LiClO4) 之間的關係,如何影響PEO結晶相的變化。
藉由固態7Li NMR的測量,在溫度小於玻璃轉化溫度時,7Li的譜寬開始明顯的變窄,這指出7Li離子除了經高分子傳導之外,鋰離子也可能沿著MCM-41的中孔洞通道表面或在MCM-41的中孔洞通道表面外移動。對於複合式高分子電解質來說,這個額外的導電機制是特殊的,這是在一些以PEO為基材的高分子摻混球狀填充物(如Al2O3、SiO2粒子)所看不到的。在去氫偶合7Li NMR光譜也證明在複合式高分子電解質中鋰離子存在於不同的化學環境。
在本研究中的第二部分,以未鍛燒及鍛燒後的MCM-41以不同比例摻混於高分子電解質的系統中,得到複合式的高分子電解質。再這一系列的高分子電解質,從其導電度與微差示熱分析儀的結果中,可以知道摻合5 wt% 的未鍛燒的MCM-41時,對高分子電解質並無助益,相反的是降低導電度。而在摻合同樣比例鍛燒後的MCM-41時,由於中孔洞表面提供許多的氫氧基,這些氫氧基將和高分子電解質中的鋰鹽作用,會增加高分子的結晶度,並且幫助鋰鹽的解離,因此導電度的結果顯示導電度提高。
另外,加入10 wt% 未鍛燒或鍛燒後的MCM-41於高分子電解質中時,均可以觀察到結晶度下降,並且導電度下降的結果。而以加入鍛燒後MCM-41結晶度下降程度較高,這是因為系統中存在路易式酸-鹼之間的作用力所形成之錯合物,由於錯合物量過多,抑制了高分子鏈鍛的再結晶。在這一部分的研究中,仍可藉由去氫偶合7Li NMR光譜也證明在複合式高分子電解質中鋰離子存在於不同的化學環境。
摘要(英) The thesis divided into two parts. First, we are interested that the effect of addition of Mesoporous silica MCM-41 with surface modification of (3-glycidyloxypropyl)trimethoxysilane (GLYMO) to poly(ethylene oxide) (PEO) complexed with LiClO4 has been explored by alternating current (AC) impedance, powder X-ray diffraction (XRD) , differential scanning calorimeter (DSC), and multinuclear solid-state NMR measurements.
The presence of small quantity of GLYMO modified MCM-41 enhances the ionic conductivity of the resulting composite electrolyte as compared to present PEO/LiClO4 electrolyte. The enhancement in conductivity is directly correlated with the improved compatibility between PEO and surface modified MCM-41 as a result of blending PEO with GLYMO group.
Addition of high concentration of surface modified MCM-41 leads to a decrease in the conductivity of the composite electrolyte, mainly because MCM-41 filler acts an insulator that impedes the lithium ion transport. DSC results show that both the polymer segmental motion and the proportion of amorphous PEO phase are affected by addition of MCM-41 filler. The change of portion of crystalline PEO phase can be explained by Lewis acid-base interactions between PEO chain, MCM-41 surface, and lithium cation.
Solid-state 7Li NMR measurements show that the 7Li linethwidth narrowing begins at temperature much lower than the glass transition temperature of PEO chains, indicative of the presence of an additional conduction mechanism with lithium ions moving along (both interior and exterior) the mesoporous channels of MCM-41.The additional mechanism is unique for the composite electrolytes doped with mesoporous silica MCM-41, and is absent in the case of other spherical fillers such as Al2O3 and SiO2 particles in PEO-based electrolytes. Variable temperature proton decoupled 7Li MAS (magic angle spinning) NMR spectra reveal that at least two different lithium environments are present in the composite electrolyte, serving as an evidence for the existence of interaction between lithium cation and MCM-41 surface.
In the second part of my thesis, the effect of addition of uncalcined or calcined mesoporous silica MCM-41 to poly(ethylene oxide) (PEO) complexed with LiClO4 has been explored by alternating current (AC) impedance, powder X-ray diffraction (XRD) , differential scanning calorimeter (DSC), and multinuclear solid-state NMR measurements.
The present of small quantity of uncalcined MCM-41 do not enhance the ionic conductivity of the resulting composite electrolyte as compared to present PEO/LiClO4 electrolyte. However, the present of small quantity of calcined MCM-41 enhances the ionic conductivity of the resulting composite electrolyte as compared to present PEO/LiClO4 electrolyte. The enhancement in conductivity is directly correlated with Lewis acid-base interactions between PEO chain, MCM-41 surface, and lithium cation.
Addition of high concentration of uncalcined or calcined MCM-41 leads to a decrease in the conductivity of the composite electrolyte, mainly because uncalcined or calcined MCM-41 filler acts an insulator that impedes the lithium ion transport. Variable temperature proton decoupled 7Li MAS (magic angle spinning) NMR spectra reveal that at least two different lithium environments are present in the composite electrolyte, serving as an evidence for the existence of interaction between lithium cation and MCM-41 surface.
關鍵字(中) ★ 複合式
★ 分子電解質
★ 中孔洞分子篩
關鍵字(英) ★ Mesoporous MCM-41
★ Composite Polymer electrolyte
論文目次 第一章 序論 1
第二章 文獻回顧 5
2-1 關於電池 5
2-2 鋰二次電池的發展 6
2-3 高分子鋰電池 14
2-4 固態高分子電解質 15
2-4-1 高分子電解質的發展 16
2-4-2 導電機制 16
2-4-3 高分子電解質之種類 18
2-4-4 複合式高分子電解質 22
2-4-5 溫度對高分子電解質的影響 23
2-4-6 奈米級複合材料的概念 24
2-5 第一、二章參考文獻 27
第三章 研究動機與實驗設計 33
3-1 研究動機 33
3-2 實驗步驟流程 34
3-2-1 實驗藥品 34
3-2-2 儀器設備 34
3-2-3 合成條件 35
3-3 實驗技術與實驗原理 37
3-3-1 X光射線繞射 (X-ray diffraction) 37
3-3-2 微差掃描卡計 (Differential Scanning Calorimeter) 38
3-3-3 交流阻抗分析 (AC Impedance analysis) 39
3-3-4 固態核磁共振 (Solid State NMR) 41
3-3-5 固態核磁共振技術 50
3-3-6 低真空掃描式電子顯微鏡 (LV-SEM) 54
3-3-7 參考文獻 56
第四章 結果與討論 57
4-1 修飾前後之中孔洞物質 (MCM-41) 鑑定 57
4-1-1 XRD結果 57
4-1-2 29Si MAS NMR光譜 59
4-1-3 1H-13C CP/MAS NMR光譜 62
4-2 填充中孔洞物質G-MCM-41於高分子電解質之結果 65
4-2-1 XRD結果 65
4-2-2 導電度結果 68
4-2-3 DSC結果 71
4-2-4 SEM結果 75
4-2-5 7Li NMR光譜 77
4-2-6 7Li MAS NMR with Proton Decoupling 81
4-2-7 討論 83
4-3 填充中孔洞物質MCM-41於高分子電解質之結果 92
4-3-1 XRD結果 92
4-3-2 Conductivity結果 97
4-3-3 DSC結果 101
4-3-4 7Li NMR光譜 104
4-3-5 7Li MAS NMR with Proton decoupling 108
4-3-6 討論 110
4-4 參考文獻 111
第五章 結論 113
參考文獻 1. Kresge, C. T. Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710-712.
2.Beshah, K.; Mark, J. E.; Ackerman, J. L. Macromolecules 1986, 19, 2194-??
3.Templin, M.; Wiesner, U.; Spiess, H. W. Adv. Mater. 1997, 9, 814-817.
4.Quartarone, E.; Mustarelii P.; Magistris, A. Solid State Ionics 1998, 110, 1-14.
5.Rabek, J. F. “Experimental Methods in Polymer Chemistry”, New York, 1980.
6.Abragram, A. The Principles of Nuclear Magnetism, Clarendon, Oxford, 1961.
7.Croce, F.; Bonino, F.; Panero, S.; Scrosati, B. Phil. Mag. B 1989, 59, 161.
8.Croce, F.; Passerini, S.; Selvaggi, A.; Scrosati, B Solid State Ionics 1990, 40-41, 375.
9.Capuano, F.; Croce, F.; Scrosati, B. J. Electrochem. Soc. 1991, 138, 1918.
10.Munichandraiah, N.; Scanlon, L. G.; Marsh, R. A.; Kumar, B; Sirlar, A. K. J. Appl. Electrochem. 1994, 24, 1066
11.Wieczorek, W.; Lipka, P.; Zukowska, G.; Wucislik, W. J. Phys. Chem. B 1998, 102, 6968-6974.
12.Wieczorek, W.; Raducha, D.; Zalewska, A.; Steven, J. R. J. Phys. Chem. B 1998, 102, 8725-8731.
13.Wieczorek, W.; Zalewska, A.; Raducha, D.; Florjanczyk, Z.; Steven, J. R. J. Phys. Chem. B 1998, 102, 352-360.
14.Wieczorek, W.; Zalewska, A.; Raducha, D.; Florjanczyk, Z.; Steven, J. R. Macromolecules 1996, 29, 143-155.
15.Scrosati, B.; Croce. F.; Persi., L. J. Electrochem. Soc. 2001, 147, 1718-1721.
16.Kumar, L.; Scanlon, G. J. Power Sources 1994, 52, 261-268.
17.Chung, S. H.; Wang, Y.; Persi, L.; Croce, F.; Greenbaum, S. G.; Scrosati, B.; Plichta, E. J. Power Sources 2001, 97-98, 644-648.
18.Appetecchi, G. B.; Croce, F.; Persi, L.; Ronci, F.; Scrosati, B. Electrochim. Acta 2000, 45, 1481-1490.
19.Croce, F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati, B.; Caminiti, R. J. Phys. Chem. B 1999, 103, 10632-10638.
20.Marcinek, M.; Bac, A.; Lipka, P.; Zalewska, A.; Zukowska, G.; Borokowska, R; Wieczorek, W. J. Phys. Chem. B 2000, 104, 11088-11093.
21. Croce, F.; Appetechi, G. B.; Persi, L.; Scrosati, B. Nature 1998, 394, 456-458.
22. Capiglia, C.; Mustarelli, P.; Quartarone, E.; Tomasi, C.; Magstris, A. Solid State Ionics 1999, 118, 73-79
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2003-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明