博碩士論文 101226035 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:13.59.111.183
姓名 陳宇桓(Yu-huan Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 探討包含金屬之非對稱、單一位能障壁系統中輻射模態致發之共振光學穿隧
(On the Radiation-Mode-Enabled Resonant Optical Tunneling in Asymmetric, Single Barrier Potential System with Metal)
相關論文
★ 以金屬與多層介電質組態實現可運用於矽基奈米光路之波導90度轉折結構★ 發展半解析法以設計高次模態合成之三維波導電漿子布拉格光柵
★ 以非對稱金屬與多層介電質組態實現可運用於奈米光路之方向性耦合器極化分離器★ 以金屬與多層介電質組態為基礎之新型波導布拉格光柵
★ 以保角映射結合傳輸線網路法設計與分析表面電漿轉折波導: 理論計算與數值模擬之比較★ 以模擬退火演算法及考慮太陽光譜權重對具金屬背電極之太陽能電池設計寬頻與全向位抗反射層
★ 有損中間層引介之光學效應於實現最大光穿透率至薄膜太陽能電池吸收層之研究★ 橫電極化光波入射非對稱「金屬-介電質」多層結構之共振耦合研究
★ 光波至混合電漿波導極化模態轉換器★ 基於模態漸變之嵌入式矽波導至混合電漿波導極化模態轉換器
★ 理論探討以金屬內部光輻射為基礎之太陽能光電轉換★ 以具全極化二維週期奈米結構之「金屬-介電質-金屬」吸收體實現電漿子增強之光電轉換
★ 具耦合電漿子增強之可見光波段電漿子光偵測器★ 適用於覆晶封裝、厚度薄型化矽基光電二極體之一維光柵: 設計與分析
★ 多原子層鋁膜中電子與聲子間之散射研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討在包含金屬之非對稱位能障壁系統中輻射模態致發之共振光學穿隧現象,以波長633 nm之橫向電場(transverse electric, TE)極化之電磁波在接近臨界角(critical angle)之角度入射由BK7玻璃、銀金屬、二氧化鈦所組成之非對稱結構,可以得到超過70% 之穿透率。將分別從光學以及量子力學兩方面討論共振光學穿隧。以理論計算穿透率對於不同入射角度、結構之關係以及計算於結構中累積之相位改變,結果顯示高穿透率之現象為輻射模態致發之共振光學穿隧現象。而在計算頻率對光學穿隧之影響,發現穿透率峰值隨頻率而改變,以入射頻率為328.29 THz或473.9 THz之穿透率峰值為中心,頻率升高或降低皆會導致穿透率峰值下降。由Fabry-Perot諧振腔模型,可以得知在低頻時,由於銀金屬與二氧化鈦層之介面反射率隨頻率降低而下降,共振效應降低,造成穿透峰值下降。而在高頻時,電磁波通過銀金屬薄膜之穿透率隨頻率升高而下降,進入共振腔內之電磁波減少,造成穿透峰值之降低。而以量子力學觀點來討論,頻率提高時,對波長歸一化之位能障礙寬度隨之提高,使得粒子進入共振腔機率下降,穿透率降低。反之,位能障礙寬度隨頻率降低,反射回入射區域之粒子機率提高,於輸出區域找到粒子機率相對降低。實驗驗證部分,設計實驗架設量取穿透率與反射率角度頻譜以驗證共振光學穿隧現象,並分析樣品製程誤差對實驗結果之影響。
摘要(英) Radiation-mode-enabled resonant optical tunneling in asymmetric, single barrier potential system with metal is investigated. The system consists of BK7 glass/silver (Ag)/titanium dioxide (TiO2)/air with the silver as the tunnel barrier. High transmittance (up to >70%) is shown to occur with transverse-electric wave incidence at near critical angle and a wavelength of 633 nm. Using finite-element-method-based simulation shows that the high transmittance - is -due to the excitation of a radiation mode of the geometry. Unlike ordinary resonator, the transmittance peaks at 328.2 and 473.9 THz in the frequency spectrum and decreases toward lower and higher frequencies. At lower frequencies, the reflectance at Ag-TiO2 interface decreases as the frequency is decreased which, from the Fabry-Perot model, weakens the resonance and leads to a lower transmittance. The decrease in transmittance as the frequency is increased is due to a low transmittance through the Ag layer , which reduces the field amplitudes penetrating into the TiO2 cavity. In the anology of quantum mechanics, the barrier thickness (normalized to wavelength) increases with the increasing frequency, which lowers the tunneling probability (i.e. transmittance) for a particle to penetrate into the cavity. On the other hand, decreasing frequency causes thinner normalized barrier thickness which would lower the confinement capability on the tunnel barrier side and increase the reflection probability back to the incident region. Experimental demonstration is pursued but to no avail due largely to sample preparations that require a small fabrication tolerance of <±1.7 nm.
關鍵字(中) ★ 共振
★ 光學穿隧
★ 輻射模態
關鍵字(英) ★ Resonance
★ Optical tunneling
★ Radiation mode
論文目次 目錄
中文摘要 i
英文摘要 ii
謝誌 iii
目錄 iv
圖目錄 v
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機 8
第二章 結構描述 9
第三章 分析方法 11
3.1多層結構之電磁波行為描述 11
3.2 Poynting向量與穿透率、反射率 14
3.3電磁波於具有損耗之結構中分布 14
3.4單一膜層之吸收率之計算 15
3.5 結構中介面反射係數 16
第四章 理論與數值模擬之結果與討論 19
4.1程式驗證 19
4.2高光學穿透率之結構與入射條件 22
4.2.1入射角度對共振光學穿隧之影響 24
4.2.2各層介面之Fresnel反射係數 26
4.3光波導輻射模態致發之共振光學穿隧 28
4.3.1簡述光波導膜射模態 29
4.3.2光波導膜射模態之計算 29
4.3.3光波導膜射模態與嚴格矩陣法計算光學穿隧場分布之比較 30
4.4光波導輻射模態之共振光學穿隧頻譜行為探討 31
4.4.1波長頻譜 32
4.4.2金屬內部穿透率與吸收率之探討 34
4.4.3 Fabry-Perot共振腔於低頻共振穿隧行為之影響 34
4.4.4金屬穿透率於高頻共振穿隧行為之影響 39
4.5量子力學類比模型與共振光學穿隧 40
第五章 實驗驗證與討論 45
5.1實驗架設之設計與校準 45
5.2樣品結構製作誤差之探討 50
5.2.1三氧化二鋁緩衝層之影響 51
5.2.2膜層厚度之製程誤差估計 51
5.3實驗結果與討論 53
第六章 結論 56
參考文獻 58
參考文獻 [1] I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,′′ Phys. Rev. Lett., vol. 97, pp. 053902, Aug. 2006.

[2] A. Q. Jian, and X. M. Zhang, “Resonant optical tunneling effect: recent progress in modeling and applications,′′ IEEE J. Select. Topics Quantum Electron., vol. 19, no. 3, May./Jun. 2013.

[3] P. Yeh, “Resonant tunneling of electromagnetic radiation in superlattice structures,′′ J. Opt. Soc. Am. A, vol. 2, no. 4, pp. 568-571, Apr. 1985.

[4] P. Yeh, Optical Waves in Layered Media. New York: Wiley, 2005.

[5] B. Lee, and W. Lee, “TM-polarized photon tunneling phase time in a frustrated-total-internal-reflection structure,′′ J. Opt. Soc. Am. B, vol. 14, no. 4, pp. 777-781, Feb. 1997.

[6] S. Hayashi, H. Kurokawa, and H. Oga, “Observation of resonant photon tunneling in photonic double barrier structures,′′ Opt. Rev., vol. 6, no. 3, pp. 204-210, Jan. 1999.

[7] H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,′′ Appl. Phys. Lett., vol. 83, no. 14, pp. 2757-2759, Oct. 1995.

[8] S. P. Frisbie, A. Krishnan, X. Xu, L. G. de Peralta, S. A. Nikishin, M. W. Holtz, and A. A. Bernussi, “Optical reflectivity of asymmetric dielectric-metal-dielectric planar
Structures,′′ J. Lightwave Technol., vol. 27, no. 15, pp. 2964-2969, Aug. 2009.

[9] G. Castaldi, V. Giuseppe, A. Alù, and N. Engheta, “Electromagnetic tunneling of obliquely incident waves through a single-negative slab paired with a double-positive uniaxial slab,′′ J. Opt. Soc. Am. B, vol. 28, no. 10, pp. 2362-2368, Oct. 2011.

[10] G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Electromagnetic tunneling through a single-negative slab paired with a double-positive bilayer,′′ Phys. Rev. B, vol. 83, no. 8, pp. 081105, Feb. 2011.

[11] M. Fox, Optical Properties of Solids. OUP Oxford, 2010.

[12] P. B. Johnson, and R. W. Christy, “Optical constants of the noble metals,′′ Phys. Rev. B, vol. 6, no. 12, pp. 4370, Dec. 1972.

[13] S. D. Mo, and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite,′′ Phys. Rev. B, vol. 51, no. 19, pp. 13023, May. 1995.

[14] Available: http://refractiveindex.info/}

[15] D. L. Lee, Electromagnetic Principles of Integrated Optics. New York: John Wily & Sons, Inc., 1986.

[16] B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics. SPIE Press, 2013.

[17] D. A. Neamen, Semiconductor Physics and Devices. McGraw-Hill Education, 2003.

[19] V. N. Mahajan, Optical Imaging and Aberrations: Ray Geometrical Optics. SPIE Press, 1998.
指導教授 張殷榮(Yin-jung Chang) 審核日期 2014-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明