以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:19 、訪客IP:18.227.190.231
姓名 王建智(Chien-chih Wang) 查詢紙本館藏 畢業系所 環境工程研究所 論文名稱 原水濁度對快濾池空氣閉塞之影響
(Effects of raw water turbidity in rapid filter air occlusion)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 石門水庫為因應颱風暴雨時期,原水濁度暴漲導致淨水廠難以處理,在水庫區設置分層取水工程,取用高程較高濁度較低之原水,但淨水廠以分層取水作為水源時,曾在淨水廠快濾池操作上發生嚴重空氣閉塞的問題,使快濾池濾程嚴重縮短,進而影響出水水量。本研究探討藉由提高濁度的方法,增加水體中顆粒的濃度,提供水中溶解性氣體異相成核的機會,使溶解態的氣體生成氣泡,進而從水體中釋出。原水利用碳酸氫鈉模擬氣體過飽和,並以高嶺土調配不同的濁度,觀察不同濁度的氣體過飽和原水混凝的情形及其對水中溶解性氣體量的影響,並探討對後續快濾單元的水頭損失與濾程之關係。
從瓶杯試驗的結果發現,混凝劑的添加量越大並不會使除氣的效果越好,反而在最佳加藥區間因為其混凝的成效較佳而有較好的除氣效果,且初始總溶解氣體量的變化也會影響膠羽的結構特性,初始溶氣量高所生成的膠羽較大且具有較多孔隙,形成相對膨鬆的結構,影響膠羽的過濾性及沉降性。模廠快濾槽因為水中溶解氣體過飽和,氣體在濾床中累積,造成空氣閉塞現象,使快濾槽的濾程縮短,配合以調整不同的初始濁度,觀察並記錄各模廠單元的水質變化情形及混凝的成效,探討不同濁度的情況對於濾程及TDGP的影響,改善快濾槽濾程因空氣閉塞而縮短的情形。由結果發現,雖然提高濁度有助於釋出水中溶解性氣體而增加濾程,但形成的膠羽易有上浮的現象,且濁度提高不是無限制,過高的濁度會增加混凝程序的負擔,使混凝的成效降低,沉澱水的濁度降不下來,增加後續快濾單元的負擔,使濾料表層快速累積顆粒形成濾餅,造成壓力水頭急遽升高。
摘要(英) Due to extreme high turbidity during typhoons or heavy rains, which resulted in difficulties in potable water treatment, the water intake well was built in the Shihmen reservoir to draw water from upper levels of the reservoir. After drawing water from the intake well, it was found that the rapid sand filter was severely clogged, the head loss increased dramatically, and the filtration run-time was seriously shortened, which are because of supersaturation of gas in the raw water. In this study, degas is proposed by adding turbid particles, which provide nucleation sites for dissolved gas so that the bubbles could be easily formed and removed. To simulate the supersaturation of total dissolved gas, sodium bicarbonate was added into the kaolin particle suspensions. The effects of turbidity on the coagulation and degas efficiency when the water is supersaturated with gas was investigated by kaolin particle suspensions were investigated. The influences of turbidity on the head loss and filtration run-time of rapid filter were also studied by pilot-scale experiments.
From the jar test, it is found that the efficiency of degas is not necessary increased with increasing dosage of coagulant. The optimal degas occur at the coagulation dosage. The amount of the initial total dissolved gas (TDG) may also affect the structure of flocs. Higher the initial TDG, looser and larger the flocs are, which further affect the settability of clos and the filterability. In the pilot study, kaolin particles and sodium bicarbonate were added into the raw water directly draw from a water treatment plant to investigate the degas of supersaturated water by increasing initial turbidity. It was found that although adding turbidity may help to release dissolved gas, ease the clogging of filter, and increase the filter run-time, the floating flocs are easily observed. Also, when the dosage of coagulant was too high, because the coagulation efficiency was poor and the flocs were unable to settle, filtered loading of rapid filtration increased instead. As the consequence, the flocs accumulated on the surface of the filter sand and the head-loss increased rapidly.
關鍵字(中) ★ 濾程
★ 總溶解氣體
★ 模場試驗關鍵字(英) ★ filtration run-time
★ total dissolved gas
★ pilot-scale experiments論文目次 摘要 ............................................................................................................... i
Abstract ............................................................................................................... ii
誌謝 ............................................................................................................... iii
目錄 ............................................................................................................... iv
圖目錄 ............................................................................................................. viii
表目錄 ............................................................................................................... xi
第一章 前言 ....................................................................................................... 1
1.1 研究緣起 .................................................................................................. 1
1.2 研究內容及目的 ...................................................................................... 2
第二章 文獻回顧 ............................................................................................... 4
2.1 過濾原理及機制 ...................................................................................... 4
2.2 影響過濾成效之因素 .............................................................................. 8
2.2.1 原水水質特性 .................................................................................... 8
2.2.2 混凝加藥量與過濾性關係 .............................................................. 10
2.2.3 其他影響快濾單元成效之因子 ...................................................... 11
2.3 空氣閉圔對濾床的影響 ........................................................................ 12
3.2 研究方法 ................................................................................................ 44
3.2.1 實場調查 .......................................................................................... 44
3.2.2 瓶杯詴驗 .......................................................................................... 44
3.2.3 模廠詴驗 .......................................................................................... 45
3.3 飽和溶氣量計算 .................................................................................... 48
第四章 結果與討論 ......................................................................................... 49
4.1 實場調查 ................................................................................................ 49
4.1.1 原水濁度及pH之時序變化 ........................................................... 49
4.1.2 水質之時序變化 .............................................................................. 54
4.1.3 水中溶解氣體隨處理程序之變化 .................................................. 57
4.2 瓶杯詴驗 ................................................................................................ 60
4.2.1 不同混凝劑加藥量對除氣能力的影響 .......................................... 62
4.2.2 不同濁度對除氣能力的影響 .......................................................... 70
4.2.3 不同的初始溶氣量對TDGP變化的影響 ..................................... 74
4.2.4 膠羽影像圖 ...................................................................................... 76
4.3 模廠詴驗 ................................................................................................ 87
4.3.1 提高濁度對濾程的影響 .................................................................. 87
4.3.2 膠羽特性分析 .................................................................................. 95
4.3.3 濾料分析 .......................................................................................... 97
第五章 結論與建議 ....................................................................................... 100
5.1 結論 ...................................................................................................... 100
5.2 建議 ...................................................................................................... 101
參考文獻 ......................................................................................................... 102
附錄一 水廠實場水質 ................................................................................... 108
附錄二 瓶杯詴驗結果 ................................................................................... 109參考文獻 AWWA, T.A.W.W.A. and ASCE, T.A.S.o.C.E., "Water Treatment Plant Design, Fifth Edition", McGraw-Hill, (2012)
Baes, C.F. and Mesmer, R.E., "Hydrolysis of Cations", A Wiley-Interscience publication, New York, (1976)
Beller, M., "Filter Mechanisms in Roughing Filter", Journal of Water supply:Research and Technology AQUA, 42, 174-185, (1993)
Benschoten, J.E.V. and Edzwald, J.K., "Chemical Aspects of Coagulation Using Aluminum Salts—I. Hydrolytic Reactions of Alum and Polyaluminum Chloride", Water Research, 24, 1519-1526, (1990)
Benschoten, J.E.V., Edzwald, J.K. and Rahman, M.A., "Effects of Temperature and Ph on Residual Aluminium for Alum and Polyaluminium Coagulants", Water Supply Oxford, 10, 49-49, (1992)
Bottero, J.Y., Axelos, M., Tchoubar, D., Cases, J.M., Fripiat, J.J. and Fiessinger, F., "Mechanism of Formation of Aluminum Trihydroxide from Keggin All3 Polymers", Journal of Colloid and Interface Science, 117, 47-57, (1987)
Bratby, J., "Coagulation and Flocculation in Water and Wastewater Treatment", IWA publishing, London, (2006)
Duan, J. and Gregory, J., "Coagulation by Hydrolysing Metal Salts", Advances in Colloid and Interface Science, 100-102, 475-502, (2003)
FLIR Inc., "Extech Do600", Waterpro of ExStik II Dissolved Oxygen Meter Instruction Manual, (2012)
HACH Inc., "Turbidimeter 2100n", HACH Model 2100N Laboratory Turbidimeter Instruction Manual, (1997)
Jones, S.F., Evans, G.M. and Galvin, K.P., "Bubble Nucleation from Gas Cavities-a Review", Advances in Colloid and Interface Science, 80, 27-50, (1999)
Kau, M. and Lawler, D.F., "Dynamics of Deep-Bed Filtration:Velocity, Depth and Media", journal of Environmental Engineering, 121, 850-859, (1995)
Letterman, R., Amirtharajah, A. and O’Melia, C., "Coagulation and Flocculation in Water Quality and Treatment", McGraw-Hill, New York, (1999)
Mackie, R.I. and Bai, R., "Suspended Particle Size Distribution and the Performance of Deep Bed Filters", Water Research, 26, 1571-1575, (1992)
O′Melia, C.R., "Coagulation and Flocculation. Physicochemical Processes for Water Quality Control (Wj Weber Jr., Editor)", A Wiley-Interscience publication, New York, (1972)
Oliveira, C. and Rubio, J., "Kaolin Aerated Flocs Formation Assisted by Polymer-Coated Microbubbles", International Journal of Mineral Processing, 106-109, 31-36, (2012)
Pernitsky, D.J. and Edzwald, J.K., "Selection of Alum and Polyaluminum Coagulants: Principles and Applications", Journal of Water Supply: Research & Technology-AQUA, 55, 121-141, (2006)
Scardina, P. and Edwards, M., "Prediction and Measurement of Bubble Formation in Water Treatment", Journal of Environmental Engineering, 127, 968-973, (2001)
Scardina, P. and Edwards, M., "Practical Implications of Bubble Formation in Conventional Treatment", American Water Works Association, 94, 85-94, (2002)
Scardina, P. and Edwards, M., "Air Binding of Granular Media Filters", Journal of Environmental Engineering, 130, 1126-1138, (2004)
Scardina, P., Edwards, M., Knocke, B., Little, J., Novak, J. and Esker, A., "Effects of Dissolved Gas Supersaturation and Bubble Formation on Water Treatment Plant Performance", Doctor of Philosophy, Virginia Polytechnic Institute and State University Civil Engineering, Virginia, (2004)
Schnabel, T., Vrabec, J. and Hasse, H., "Erratum to Henry’s Law Constants of Methane, Nitrogen, Oxygen and Carbon Dioxide in Ethanol from 273 to 498 K: Prediction from Molecular Simulation", Fluid Phase Equilibria, 239, 125-126, (2006)
Watanabe, M. and Ushiyama, T., "Characteristics and Effective Applications of Polymer Coagulant", Textile Dyeing Waste Water Treatment, (2000)
Zhao, B., Wang, D., Li, T., Chow, C.W.K. and Huang, C., "Influence of Floc Structure on Coagulation–Microfiltration Performance: Effect of Al Speciation Characteristics of Pacls", Separation and Purification Technology, 72, 22-27, (2010)
Zhou, Z.A., Xu, Z. and Finch, J.A., "Effect of Surface Properties of Fine Particles on Dynamic Bubble Formation in Gas-Supersaturated Systems", Industrial & Engineering Chemistry Research, 37, 1998-2004, (1998)
朱立群與黃庭郁, "水質偏鹼 影響400萬人用水 9.55變7.59 環團疑石門水庫ph值遭竄改", 中國時報, (2007)
江漢全, "水質分析", 三民書局股份有限公司, 台北, (1996)
杭子樵, "聚氯化鋁之生產、品質控制與應用", 台灣省自來水公司, (2002)
杭子樵與黃永富, "快濾池雙層濾料影響過濾水濁度之研究", 自來水公司第十二區管理處, (2009)
林文煒, "原水有機物含量對污泥毯穩定性之影響", 第18 屆自來水研討會, (2001)
范喻翔, "淨水場濾池反洗廢水水量與水質特性之研究", 碩士論文, 國立中央大學 環境工程研究所, 中壢, (2008)
翁韻雅, "以高分子凝集劑處理高濁度原水之研究", 碩士論文, 國立成功大學 環境工程研究所, 台南, (2003)
高肇藩, "給水工程(衛生工程自來水篇)", 宏榮堂印刷, (1980)
張嘉元, "石門水庫分層取水對於平鎮淨水廠 快濾池堵塞成因分析", 碩士論文, 國立中央大學 環境工程研究所, 中壢, (2012)
張漢昌, "廢水處理", 文京圖書出版, 台北, (1997)
陳韋弘, "混凝劑al型態對高濁水混凝行為之影響", 碩士論文, 國立交通大學 環境工程研究所, 新竹, (2005)
曾迪華, 秦靜如與林居慶, "石門水庫分層取水水源水質對相關淨水場操作影響及改善措施因應策略之研究期末報告", 台灣自來水公司第二區管理處, (2012)
黃泊璋, "石門水庫分層取水對於前加氯與混凝成效之影響", 碩士論文, 國立中央大學 環境工程研究所, 中壢, (2012)
葉清華, "南化淨水場快濾池健檢之研究", 台灣自來水公司, (2008)
福島生活科技有限公司, http://www.supermt.com.tw/, (2010)
趙俊銘, "以超音波法改善快濾池空氣閉塞之研究", 碩士論文, 國立中央大學 環境工程研究所, 中壢, (2013)
趙曉丹, "運河低溫低濁水處理技術", 上海電力學院學報, 25, 487-490, (2009)
劉奕甫, "低濁原水處理策略評估:實驗室及現場診斷", 碩士論文, 國立交通大學 環境工程研究所, 新竹, (2008)
劉嘉宏, "混凝劑種類對低濁度原水混凝影響之研究", 碩士論文, 國立成功大學 環境工程研究所, 台南, (2006)
環境科學大辭典, "雙膜理論", http://terms.naer.edu.tw/detail/1320806/, (2002)
蘇照仁與林信忠, "96年度潭頂廠低濁原水混凝劑加藥量改善之研究", 台灣自來水公司, (2007)
指導教授 秦靜如(Ching-ju Chin) 審核日期 2014-7-25 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare