國立中央大學104學年度碩士班考試入學試題

所別:光電科學與工程學系碩士班 不分組(一般生) 科目:電子學 共 頁 第 / 頁 本科考試可使用計算器,廠牌、功能不拘 *請在答案卷(卡)內作答

- 1. The transistor in the circuit in Fig. 1 has parameters are $V_{TN}=0.5$ V and $K_n=0.5$ mA/V², $V_{DD}=3$ V, $R_D=1$ k Ω , $R_{Si}=1$ k Ω , $V_{I}=(-1+0.1\sin\omega t)$ V, $C_{gd}=5$ pF, $C_{gs}=50$ pF, $r_O\to\infty$.
 - (a) Determine the small-signal voltage gain $A_{\nu}(s)$. (10%)
 - (b) Determine the 3dB frequency for the small-signal voltage gain. (5%)
 - (c) Sketch Bode plots of magnitude (5%) and phase (5%) for the circuit.
 - (d) Plot output voltage versus time for the circuit as the signal frequency is set at 1 MHz. (5%)
- 2. The op-amp in Fig. 2 is ideal. The resistors are set as $R = R_1 = R_2 = 1$ K Ω . The diodes D_1 and D_2 have piecewise linear parameters of turn on (cut-in) voltage $V_r = 0$ and forward diode resistance $r_f = 0$. If input voltage $v_I = 6$ (sin ωt) V is applied.
 - (a) Plot v_0 versus v_1 for the circuit. (5%)
 - (b) Plot v_0 versus time for the circuit. (5%)
- 3. For the circuit shown in Fig. 3, derive the expressions for the voltage transfer function $T(s) = V_0(s)/V_i(s)$ (5%), determine the cutoff frequency f_{3dB} (5%).
- 4. For the circuit shown in Fig. 4, determine
 - a. the Bode magnitude plot of v_o to v_i ; (5%)
 - b. the Bode phase plot of v_o to v_i , (5%)
 - c. the possible applications. (5%)
- 5. Consider the circuit with multiple output transistors shown in Fig. 5. Assume V_{BE1} =0.7 V. Evaluate the values of R_{E2} (5%) and R_{E3} (5%) such that I_{O2} =20 μ A and I_{O3} =80 μ A.
- 6. For the circuit shown in Fig. 6, draw the small-signal equivalent circuit (5%) and determine the voltage gain (5%), the current gain (5%), the input resistance (5%), and the output resistance (5%) according to the equivalent circuit.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6