博碩士論文 102323015 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.191.147.22
姓名 徐旭巒(Hsu-Luan Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 環境效應對固態氧化物燃料電池 接合件潛變性質之影響
(Environmental Effects on the Creep Properties of Joints in Solid Oxide Fuel Cell)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的在探討還原環境對於玻璃陶瓷接合劑和金屬連接板接合件的潛變性質與破壞模式之影響,所使用的玻璃陶瓷為核能研究所開發一款代號為GC-9的材質,金屬連接板則是使用代號為Crofer 22 H的商用肥粒鐵系不銹鋼。在800 °C的H2-7 vol% H2O還原環境下,對於接合件施予剪力及張力固定負載來進行潛變實驗,同時評估還原環境時效處理對接合件潛變性質的影響,並比較在還原環境與氧化環境下潛變性質的差異。

結果顯示,接合件試片於800 °C H2-7 vol% H2O氣氛下的剪力與張力潛變壽命會隨著負載減少而增加。剪力試片具1000小時壽命的潛變強度約為剪力接合件強度的18%,而張力試片具1000小時壽命的潛變強度則約為張力接合件強度的0.67%。兩個可能影響接合件抗潛變性質的原因為:(1) 潛變實驗過程中的即時熱處理,增加GC-9玻璃陶瓷基材中的結晶量,並提升接合件的抗潛變能力;(2) 隨著潛變時間增加,還原環境中的水會降低GC-9玻璃陶瓷基材中非結晶相的黏滯性,軟化接合件的結構。因此剪力與張力接合件試片的破裂位置,隨著潛變時間的增加,由破裂於GC-9玻璃陶瓷基材中,轉變為GC-9與氧化鉻(Cr2O3)的介面,最後變回破裂於GC-9中。

經1000小時還原環境時效處理後,剪力試片具1000小時壽命的潛變強度約為未經時效處理剪力接合件強度的32%,而張力試片具1000小時壽命的潛變強度則約為未經時效處理張力接合件強度的38%。經時效處理後,接合件的抗潛變能力降低的主要原因為,在GC-9玻璃陶瓷基材中的玻璃相與結晶相之間形成微孔洞所導致。對於未時效處理之剪力與張力試片,在還原環境下接合件的抗潛變能力,明顯低於氧化環境下接合件的抗潛變能力,主要原因為還原環境中的水氣降低接合件的結構強度所致。

摘要(英) The objective of this study is to investigate the effect of reducing environment on the creep properties of a joint between a glass-ceramic sealant and an interconnect steel with no and 1000-h thermal aging in a reducing environment (H2-7 vol% H2O). The joint between glass-ceramic and metallic interconnect is subjected to an applied tensile or shear constant load in reducing environment at 800 °C during the creep test. The materials used are a GC-9 glass-ceramic sealant developed at the Institute of Nuclear Energy Research (INER) and a commercial Crofer 22 H ferritic stainless steel. Comparison of the creep properties in oxidizing and reducing environments is also made for the non-aged joint.

The creep rupture time of Crofer 22 H/GC-9/Crofer 22 H joint is increased with a decrease in the applied constant shear and tensile loading at 800 °C regardless of thermal aging condition. The shear and tensile creep strength of non-aged joint at 1000 h in the given reducing atmosphere is about 18% and 0.67% of the average shear and tensile joint strength, respectively. For both non-aged tensile and shear specimens with a short creep rupture time less than 10 h, fracture mainly occurs within the GC-9 glass-ceramic. For a creep rupture time of 10-100 h, fracture site changes to the interface between the Cr2O3 layer and the GC-9 glass-ceramic. For a creep rupture time over 100 h, the GC-9 glass-ceramic layer is the major fracture site, again.

After 1000-h thermal aging in the given reducing environment, the shear and tensile creep strength at 1000 h in H2-7 vol% H2O of the aged joint is about 32% and 38%, respectively, of that without a thermal aging. Degradation of creep strength in the joint after a thermal aging is probably due to formation of micro-voids between crystalline and glassy phases during the cooling process. The creep resistance of the non-aged joint is significantly degraded when the testing environment is changed from oxidizing environment to reducing environment. As water in the given humidified hydrogen might relax joint structure, the creep resistance of joint in reducing environment becomes weaker than that in air regardless of loading mode.

關鍵字(中) ★ 固態氧化物燃料電池
★ 接合件
★ 潛變性質
關鍵字(英) ★ Solid Oxide Fuel Cell
★ Joints
★ Creep Properties
論文目次 TABLE OF CONTENT

Page

LIST OF TABLES VI

LIST OF FIGURES VII

1. INTRODUCTION 1

1.1 Solid Oxide Fuel Cell 1

1.2 Glass Sealant 2

1.3 Joint of Glass-Ceramic Sealant and Metallic Interconnect 5

1.4 Creep of Joint of Glass-Ceramic Sealant and Metallic Interconnect 9

1.5 Purposes 12

2. MATERIALS AND EXPERIMENTAL PROCEDURES 14

2.1 Materials and Specimen Preparation 14

2.2 Creep Test 15

2.2.1 Friction test 16

2.3 Microstructural Analysis 17

3. RESULTS AND DISCUSSION 18

3.1 Non-aged Joint of Glass-Ceramic Sealant and Metallic Interconnect 19

3.1.1 Creep rupture behavior 19

3.1.2 Failure analysis 20

3.2 1000 h-aged Joint of Glass-Ceramic Sealant and Metallic 24

3.2.1 Creep rupture behavior 24

3.2.2 Failure analysis 25

3.3 Effects of Thermal Aging in Reducing Environment 25

3.4 Effects of Environment on Creep Rupture Behavior 29

4. CONCLUSIONS 32

REFERENCES 34

TABLES 41

FIGURES 43

參考文獻 1. K. Kendall, N. Q. Minh, and S. C. Singhal, “Cell and Stack Designs,” Chapter 8 in High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, edited by S. C. Singhal and K. Kendall, Elsevier, Kidlington, UK, 2003.

2. J. Malzbender, J. Mönch, R. W. Steinbrech, T. Koppitz, S. M. Gross, and J. Remmel, “Symmetric Shear Test of Glass-Ceramic Sealants at SOFC Operation Temperature,” Journal of Materials Science, Vol. 42, pp. 6297-6301, 2007.

3. J. W. Fergus, “Sealants for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 147, pp. 46-57, 2005.

4. W. Z. Zhu and S. C. Deevi, “A Review on the Status of Anode Materials for Solid Oxide Fuel Cells,” Materials Science and Engineering, Vol. A362, pp. 228-239, 2003.

5. P. Batfalsky, V. A. C. Haanappel, J. Malzbender, N. H. Menzler, V. Shemet, I. C. Vinke, and R. W. Steinbrech, “Chemical Interaction Between Glass-Ceramic Sealants and Interconnect Steels in SOFC Stacks,” Journal of Power Sources, Vol. 155, pp. 128-137, 2006.

6. Y. Zhao and J. Malzbender, “Elevated Temperature Effects on the Mechanical Properties of Solid Oxide Fuel Cell Sealing Materials,” Journal of Power Sources, Vol. 239, pp. 500-504, 2013.

7. A. Nakajo, J. Kuebler, A. Faes, U. F. Vogt, H. J. Schindler, L.-K. Chiang, S. Modena, J. V. Herle, and T. Hocker, “Compilation of Mechanical Properties for the Structural Analysis of Solid Oxide Fuel Cell Stacks. Constitutive Materials of Anode-Supported Cells,” Ceramics International, Vol. 38, pp. 3907-3927, 2012.

8. P. A. Lessing, “A Review of Sealing Technologies Applicable to Solid Oxide Electrolysis Cells,” Journal of Materials Science, Vol. 42, pp. 3465-3476, 2007.

9. I. W. Donald, “Preparation, Properties and Chemistry of Glass- and Glass-Ceramic-to-Metal Seals and Coatings,” Journal of Materials Science, Vol. 28, pp. 2841-2886, 1993.

10. K. S. Weil, J. S. Hardy, and B. J. Koeppel, “New Sealing Concept for Planar Solid Oxide Fuel Cells,” Journal of Materials Engineering and Performance, Vol 15, pp. 427-432, 2006.

11. K. S. Weil and B. J. Koeppel, “Thermal Stress Analysis of the Planar SOFC Bonded Compliant Seal Design,” International Journal of Hydrogen Energy, Vol. 33, pp. 3976-3990, 2008.

12. K. S. Weil, “The State-of-the-Art in Sealing Technology for Solid Oxide Fuel Cells,” JOM, Vol. 58, pp. 37-44, 2006.

13. S. R. Choi and N. P. Bansal, “Mechanical Properties of SOFC Seal Glass Composites,” Ceramic Engineering and Science Proceedings, Vol. 26, pp. 275-283, 2005.

14. V. A. Haanappel, V. Shemet, I. C. Vinke, and W. J. Quadakkers, “A Novel Method to Evaluate the Suitability of Glass Sealant-Alloy Combinations under SOFC Stack Conditions,” Journal of Power Sources, Vol. 141, pp. 102-107, 2005.

15. S. Ghosh, A. D. Sharma, P. Kundu, and R. N. Basuz, “Glass-Ceramic Sealants for Planar IT-SOFC: A Bilayered Approach for Joining Electrolyte and Metallic Interconnect,” Journal of the Electrochemical Society, Vol. 155, pp. 473-478, 2008.

16. K. S. Weil, J. E. Deibler, J. S. Hardy, D. S. Kim, G.-G. Xia, L. A. Chick, and C. A. Coyle, “Rupture Testing as a Tool for Developing Planar Solid Oxide Fuel Cell Seals,” Journal of Materials Engineering and Performance, Vol. 13, pp. 316-326, 2004.

17. J. Milhans, M. Khaleel, X. Sun, M. Tehrani, M. Al-Haik, and H. Garmestani, “Creep Properties of Solid Oxide Fuel Cell Glass-Ceramic Seal G18,” Journal of Power Sources, Vol, 195, pp. 3631-3635, 2010.

18. Y.-S. Chou, J. W. Stevenson, and P. Singh, “Effect of Pre-Oxidation and Environmental Aging on the Seal Strength of a Novel High-Temperature Solid Oxide Fuel Cell (SOFC) Sealing Glass with Metallic Interconnect,” Journal of Power Sources, Vol. 184, pp. 238-244, 2008.

19. E. V. Stephens, J. S. Vetrano, B. J. Koeppel, Y. Chou, X. Sun, and M. A. Khaleel, “Experimental Characterization of Glass-Ceramic Seal Properties and Their Constitutive Implementation in Solid Oxide Fuel Cell Stack Models,” Journal of Power Sources, Vol. 193, pp. 625-631, 2009.

20. C.-K. Liu, T.-Y. Yung, and K.-F. Lin, “Effect of La Addition on the Thermal and Crystalline Properties of SiO2-B2O3-Al2O3-BaO Glasses,” Proceedings of the Annual Conference of the Chinese Ceramic Society (CD-ROM), 2007. (in Chinese)

21. C.-K. Liu, T.-Y. Yung, S.-H. Wu, and K.-F. Lin, “Study on a SiO2-B2O3-Al2O3-BaO Glass System for SOFC Applications,” Proceedings of the MRS_Taiwan Annual Meeting (CD-ROM), 2007. (in Chinese)

22. C.-K. Liu, T.-Y. Yung, and K.-F. Lin, “Isothermal Crystallization Properties of SiO2-B2O3-Al2O3-BaO Glass,” Proceedings of the Annual Conference of the Chinese Ceramic Society (CD-ROM), 2008. (in Chinese)

23. H.-T. Chang, “High-Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cell,” Ph.D. Thesis, National Central University, Jhong-Li, Taiwan, 2010.

24. J. Fergus, R. Hui, X. Li, D. P. Wilkinson, and J. Zhang, Solid Oxide Fuel Cells: Materials Properties and Performance, CRC Press, New York, USA, 2008.

25. Z. Yang, J. W. Stevenson, and K. D. Meinhardt, “Chemical Interactions of Barium–Calcium–Aluminosilicate-Based Sealing Glasses with Oxidation Resistant Alloys,” Solid State Ionics, Vol. 160, pp. 213-225, 2003.

26. Z. Yang, K. D. Meinhardt, and J. W. Stevenson, “Chemical Compatibility of Barium-Calcium-Aluminosilicate-Based Sealing Glasses with the Ferritic Stainless Steel Interconnect in SOFCs,” Journal of The Electrochemical Society, Vol. 150, pp. 1085-1101, 2003.

27. Z. Yang, G. Xia, K. D. Meinhardt, K. S. Weil, and J. W. Stevenson, “Chemical Stability of Glass Seal Interfaces in Intermediate Temperature Solid Oxide Fuel Cells,” Journal of Materials Engineering and Performance, Vol. 13, pp. 327-334, 2004.

28. V. A. C. Haanappel, V. Shemet, S. M. Gross, T. Koppitz, N. H. Menzler, M. Zahid, and W. J. Quadakkers, “Behaviour of Various Glass-Ceramic Sealants with Ferritic Steels under Simulated SOFC Stack Conditions,” Journal of Power Sources, Vol. 150, pp. 86-100, 2005.

29. N. H. Menzler, D. Sebold, M. Zahid, S. M. Gross, and T. Koppitz, “Interaction of Metallic SOFC Interconnect Materials with Glass-Ceramic Sealant in Various Atmospheres,” Journal of Power Sources, Vol. 152, pp. 156-167, 2005.

30. V. A. C. Haanappel, V. Shemet, I. C. Vinke, S. M. Gross, T. Koppitz, N. H. Menzler, M. Zahid, and W. J. Quadakkers, “Evaluation of the Suitability of Various Glass Sealant-Alloy Combinations under SOFC Stack Conditions,” Journal of Materials Science, Vol. 40, pp. 1583-1592, 2005.

31. F. Smeacetto, M. Salvo, M. Ferraris, J. Chob, and A. R. Boccaccini, “Glass-Ceramic Seal to Join Crofer 22 APU Alloy to YSZ Ceramic in Planar SOFCs,” Journal of the European Ceramic Society, Vol. 28, pp. 61-68, 2008.

32. F. Smeacetto, M. Salvo, M. Ferraris, V. Casalegno, P. Asinari, and A. Chrysanthou, “Characterization and Performance of Glass-Ceramic Sealant to Join Metallic Interconnects to YSZ and Anode-Supported-Electrolyte in Planar SOFCs,” Journal of the European Ceramic Society, Vol. 28, pp. 2521-2527, 2008.

33. T. Jin and K. Lu, “Compatibility between AISI441 Alloy Interconnect and Representative Seal Glasses in Solid Oxide Fuel/Electrolyzer Cells,” Journal of Power Sources, Vol. 195, pp. 4853-4864, 2010.

34. Y.-S. Chou, E. C. Thomsen, R. T. Williams, J.-P. Choi, N. L. Canfield, J. F. Bonnett, J. W. Stevenson, A. Shyam, and E. Lara-Curzio, “Compliant Alkali Silicate Sealing Glass for Solid Oxide Fuel Cell Applications: Thermal Cycle Stability and Chemical Compatibility,” Journal of Power Sources, Vol. 196, pp. 2709-2716, 2011.

35. G. Kaur, O. P. Pandey, and K. Singh, “Chemical Interaction Study between Lanthanum Based Different Alkaline Earth Glass Sealants with Crofer 22 APU for Solid Oxide Fuel Cell Applications,” International Journal of Hydrogen Energy, Vol. 37, pp. 3883-3889, 2012.

36. Y.-S. Chou, E. C. Thomsen, J.-P. Choi, and J. W. Stevenson, “Compliant Alkali Silicate Sealing Glass for Solid Oxide Fuel Cell Applications: The Effect of Protective YSZ Coating on Electrical Stability in Dual Environment,” Journal of Power Sources, Vol. 202, pp. 149-156, 2012.

37. S. Celikn, “Influential Parameters and Performance of a Glass-Ceramic Sealant for Solid Oxide Fuel Cells,” Ceramics International, Vol. 41, pp. 2744-2751, 2015.

38. B. Timurkutluka, Y. Ciflik, and H. Korkmaz, “Strength Evaluation of Glass-Ceramic Composites Containing Yttria Stabilized Zirconia after Thermal Cycling,” Ceramics International, Vol. 41, pp. 6985-6990, 2015.

39. V. Kumar, G. Kaur, K. Lu, and G. Pickrell, “Interfacial Compatibility of Alumino-Borosilicate Glass Sealants with AISI 441 and YSZ for Different Atmospheres,” International Journal of Hydrogen Energy, Vol. 40, pp. 1195-1202, 2015.

40. C.-K. Lin, T.-T. Chen, Y.-P. Chyou, and L.-K. Chiang, “Thermal Stress Analysis of a Planar SOFC Stack,” Journal of Power Sources, Vol. 164, pp. 238-251, 2007.

41. A.-S. Chen, “Thermal Stress Analysis of a Planar SOFC Stack with Mica Sealants,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2007.

42. C.-K. Lin, L.-H. Huang, L.-K. Chiang, and Y.-P. Chyou, “Thermal Stress Analysis of Planar Solid Oxide Fuel Cell Stacks: Effects of Sealing Design,” Journal of Power Sources, Vol. 192, pp. 515-524, 2009.

43. L. Blum, S. M. Groß, J. Malzbender, U. Pabst, M. Peksen, R. Peters, and I. C. Vinke, “Investigation of Solid Oxide Fuel Cell Sealing Behavior under Stack Relevant Conditions at Forschungszentrum Jülich,” Journal of Power Sources, Vol.196, pp. 7175-7181, 2011.

44. J.-Y. Chen, “Analysis of Mechanical Properties for the Joint of Metallic Interconnect and Glass Ceramic in Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2010.

45. Y.-A. Liu, “Environmental Effects on the Mechanical Properties of Joints in Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2014.

46. J.-H. Yeh, “Analysis of High-Temperature Mechanical Durability for the Joint of Glass Ceramic Sealant and Metallic Interconnect for Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2011.

47. D. W. Richerson, Modern Ceramic Engineering, 2nd Ed., Marcel Dekker, New York, USA, 1992.

48. N. E. Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, 3rd Ed., Prentice Hall, New Jersey, USA, 2007.

49. J. Laurencin, G. Delette, F. Usseglio-Viretta, and S. D. Iorio, “Creep Behaviour of Porous SOFC Electrodes: Measurement and Application to Ni-8YSZ Cermets,” Journal of the European Ceramic Society, Vol. 31, pp. 1741-1752, 2011.

50. C. Y. S. Chang, W. C. J. Wei, and C. H. Hsueh, “Viscosity of Ba-B-Si-Al-O Glass Measured by Indentation Creep Test at Operating Temperature of IT-SOFC,” Journal of Non-Crystalline Solids, Vol. 357, pp. 1414-1419, 2011.

51. J. Milhans, D. S. Li, M. Khaleel, X. Sun, M. S. Al-Haik, A. Harris, and H. Garmestani, “Mechanical Properties of Solid Oxide Fuel Cell Glass-Ceramic Seal at High Temperatures,” Journal of Power Sources, Vol. 196, pp. 5599-5603, 2011.

52. C.-K. Lin, K.-L. Lin, J.-H. Yeh, W.-H. Shiu, C.-K. Liu, and R.-Y. Lee, “Aging Effects on High-Temperature Creep Properties of a Solid Oxide Fuel Cell Glass-Ceramic Sealant,” Journal of Power Sources, Vol. 241, pp. 12-19, 2012.

53. J. Malzbender, Y. Zhao, and T. Beck, “Fracture and Creep of Glass-Ceramic Solid Oxide Fuel Cell Sealant Materials,” Journal of Power Sources, Vol. 246, pp. 574-580, 2014.

54. J. Froitzheim, G. H. Meier, L. Niewolak, P. J. Ennis, H. Hattendorf, L. Singheiser, and W. J. Quadakkers, “Development of High Strength Ferritic Steel for Interconnect Application in SOFCs,” Journal of Power Sources, Vol. 178, pp. 163-173, 2008.

55. B. Kuhn, C. A. Jimenez, L. Niewolak, T. Hüttel, T. Beck, H. Hattendorf, L. Singheiser, and W. J. Quadakkers, “Effect of Laves Phase Strengthening on the Mechanical Properties of High Cr Ferritic Steels for Solid Oxide Fuel Cell Interconnect Application,” Materials Science and Engineering A, Vol. 528, pp. 5888-5899, 2011.

56. Y.-T. Chiu, C.-K. Lin, and J.-C. Wu, “High-Temperature Tensile and Creep Properties of a Ferritic Stainless Steel for Interconnect in Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 196, pp. 2005-2012, 2011.

57. Y.-T. Chiu and C.-K. Lin, “Effects of Nb and W Additions on High-Temperature Creep Properties of Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnect,” Journal of Power Sources, Vol. 198, pp. 149-157, 2012.

58. D. N. Boccaccini, H. L. Frandsen, B. R. Sudireddy, P. Blennow, Å. H. Persson, K. Kwok, and P. V. Hendriksen, “Creep Behaviour of Porous Metal Supports for Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy, Vol. 39, pp. 21569-21580, 2014.

59. B. Rutkowski, J. Malzbender, T. Beck, R. W. Steinbrech, and L. Singheiser, “Creep Behaviour of Tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ Gas Separation Membranes,” Journal of the European Ceramic Society, Vol. 31, pp. 493-499, 2011.

60. K.-L. Lin, “Analysis of Creep Properties of Glass Ceramic Sealant and Its Joint with Metallic Interconnect for Solid Oxide Fuel Cells,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2012.

61. Y.-T. Chiu, “Creep and Thermo-Mechanical Fatigue Properties of Ferritic Stainless Steels for Use in Solid Oxide Fuel Cell Interconnect,” Ph.D. Thesis, National Central University , Jhong-Li, Taiwan, 2012.

62. C.-K. Liu, T-.Y. Yung, K.-F. Lin, R.-Y. Lee, and T.-S. Lee, Glass-Ceramic Sealant for Planar Solid Oxide Fuel Cells, United States Patent No. 7,897,530 B2, 2011.

63. M. Tomozawa, H. Li, and K. M. Davis, “Water Diffusion, Oxygen Vacancy Annihilation and Structural Relaxation in Silica Glasses,” Journal of Non-Crystalline Solids, Vol. 179, pp. 162-169, 1994.

64. S. Fujita, A. Sakamoto, and M. Tomozawa, “Behavior of Water in Glass During Crystallization,” Journal of Non-Crystalline Solids, Vol. 320, pp. 56-63, 2003.

65. T. Jin, M. O. Naylor, J. E. Shelby, and S. T. Misture, “Galliosilicate Glasses for Viscous Sealants in Solid Oxide Fuel Cell Stacks: Part III, Behavior in Air and Humidified Hydrogen,” International Journal of Hydrogen Energy, Vol. 38, pp. 16308-16319, 2013.

66. W. Liu, X. Sun, and M. A. Khaleel, “Predicting Young’s Modulus of Glass/Ceramic Sealant for Solid Oxide Fuel Cell Considering the Combined Effects of Aging, Micro-Voids and Self-Healing,” Journal of Power Sources, Vol. 185, pp. 1193-1200, 2008.

67. G. Wei, J. Qu, Z. Yu, Y. Li, Q. Guo, and T. Qi, “Mineralizer Effects on the Synthesis of Amorphous Chromium Hydroxide and Chromium Oxide Green Pigment Using Hydrothermal Reduction Method,” Dyes and Pigments, Vol. 113, pp. 487-495,2015.

指導教授 林志光(Chih-kuang Lin) 審核日期 2015-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明