博碩士論文 102326006 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:13.59.12.0
姓名 張博凱(Po-Kai Chang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以數值模擬分析狹縫型虛擬衝擊器之效能
(A CFD Study of Effects of Flow and Geometrical Parameters on Slit Virtual Impactor Performance)
相關論文
★ 熱昇華廢棄相紙資源化研究★ 地勤公司從業人員搬運作業肌肉骨骼傷害風險評估
★ 高階製程安全管理架構★ In Situ Measurements of CCN Activity and Aerosol Optical Properties at Biomass Burning Source and Receptor Regions
★ 以COMSOL Multiphysics模擬氣懸微粒於靜電集塵式細胞株暴露系統中之運動軌跡★ 社區改造碳排放及減量計算分析與探討
★ 中小型燃煤鍋爐粒狀污染物、硫氧化物及氮氧化物經串聯控制設備後之去除效率探討研究-以桃園市為例★ 整合填充型水洗技術於潔淨室外氣空調箱 以去除酸鹼氣態分子污染物之研究
★ 固定污染源揮發性有機物(VOCs)自廠係數建置-以某矽晶圓製造廠為例★ 高層建築大樓室內空氣品質之探討-以某企業大樓為例
★ 公路交通運輸對於山谷地形郊區空氣品質之影響★ 以沸石轉輪焚化系統處理變壓器塗裝作業VOCs效率探討
★ 研究微粒帶電性質與呼吸毒性之關聯: 以小鼠暴露奈米黑碳微粒實驗為例★ 靜電集塵式ALI暴露系統之設計、開發與評估
★ 以石英晶體微天平量測細懸浮微粒PM2.5質量濃度之可行性探討★ 以HTDMA與HT DMA-APM系統探討無機鹽奈米微粒的吸溼行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用數值模擬軟體COMSOL Multiphysics分析現有的虛擬衝擊器,在不同流量與不同構形下的濃縮效能。不同流量的影響分為進氣流量的影響與次要流比的影響,不同構形的影響分為漸縮區與收集口管壁影響。由模擬結果得知,進氣流量與截取粒徑呈反比,當進氣流量為13 LPM時,截取粒徑為1.4 μm;當進氣流量為400 LPM時,截取粒徑為0.2 μm,而無論進氣流量大小,Stk50^0.5皆為0.8,可達到的最高濃縮倍率也都為9.5倍。另外,由於漸縮區的關係,會使微粒具有橫向慣性,造成約在Stk50^0.5為1.9時,微粒會發生交錯現象,並沉積在收集口管壁,因此大粒徑的濃縮倍率會下降。在不同的進氣流量下,無論是截取粒徑,或最高濃縮倍率可濃縮的粒徑範圍皆可用史托克數預測。次要流比同樣也與截取粒徑呈反比,次要流比為0.05時,截取粒徑為0.63 μm;次要流比為0.4時,截取粒徑為0.21 μm。由於濃縮倍率與次要流比呈反比,因此在次要流比為0.05與0.4時,可達到的最高濃縮倍率分別為18.0與2.5倍。由於原始的史托克數公式,無法用來預測不同次要流比的截取粒徑,因此本研究提出新的史托克數公式,其在公式中,加入次要流比r的影響,藉此用來預測不同次要流比下的截取粒徑,並且也經由實驗數據證明的此公式的可行性。在構形的影響的部分,將漸縮區由斜面漸縮改為弧口漸縮後,其降低橫向的慣性,延緩微粒交錯現象,但截取粒徑與截取粒徑的損失卻會增加,而將收集口管壁改為漸擴構形時,可在截取粒徑不變的情況下,降低截取粒徑與大微粒的損失,提高濃縮倍率。藉由以上四種流量與構形的分析,可依據虛擬衝擊器使用功能的不同,分析最佳的流量與構形組合。
摘要(英) The virtual impactor was well known as it could avoid particle bounce and overloading typically encountered with inertial impactors. In this study, the flow field and particle trajectory in a slit type virtual impactor was simulated numerically by a commercial Computational Fluid Dynamics (CFD) software (COMSOL Multiphysics v.4.3b). Effects of flow and slit geometry, including the total flow (Qin), the ratio of minor to total flow (r), the taper slip nozzle (45⁰ chamfer lip and arc lip) and the collection probe configuration (straight and divergent), were investigated. The performance parameters for evaluating the performance were the collection efficiency (CE), the particle loss, the cutoff size (d50), and the concentrating factor (CF). The results show that the d50 is strongly depending on either Qin or r. For instance, the d50 could be reduced form 1.4 μm to 0.2 μm as Qin increased from 13 LPM to 400 LPM at r = 0.1. When Qin was fixed at 80 LPM, the d50 will decrease from 0.63 μm to 0.21 μm as minor flow ratio increasing from 0.05 to 0.4. In addition, a new modified Stokes number for virtual impactor to include the effect of r was proposed. It was further found the square root of this modified Stokes number was retained at about 0.9 under different Qin or r, which can be considered as the characteristic performance parameter for this slit type virtual impactor. On the other hand, the numerical simulation results show particle loss would increase when Stk^0.5 lager than 1.9 due to the particle crossing phenomenon. The particle crossing in acceleration nozzle caused particle deposit on collection probe and CF would decreased. In geometry analysis, the gradual curving lip could postpone particle crossing and decrease the internal loss of larger particles, but the particle loss near cutoff size was increased. Moreover, the divergent probe could decrease the particle loss near the d50 and collection probe. At last, the preliminary experimental tests were conducted to validate the numerical simulation results.
關鍵字(中) ★ 數值模擬
★ COMSOL
★ 狹縫型虛擬衝擊器
★ 史托克數
關鍵字(英) ★ CFD
★ COMSOL
★ Slit virtual impactor
★ Stokes number
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XIII
符號說明 XIV
第一章 緒論 1
1-1 研究緣起 1
1-2 研究動機 2
(a) 虛擬旋風器 (virtual cyclone) 2
(b) 虛擬衝擊器 (virtual impactor) 5
1-3 研究目的 11
第二章 文獻回顧 12
2-1 結構設計 12
2-1-1 單圓孔虛擬衝擊器(Single Nozzle VI) 12
2-1-2 多圓孔虛擬衝擊器(Multi-Nozzle VI) 25
2-1-3 單狹縫虛擬衝擊器(Single Slit VI) 27
2-1-4 多狹縫虛擬衝擊器(Multi-Slit VI) 29
2-2 效能評估 30
2-2-1 操作流量對效能影響 31
2-2-2 結構設計參數對效能影響 31
第三章 研究方法 34
3-1 研究架構 34
3-2 數值模擬 37
3-2-1 模擬系統 37
3-2-2 測試條件 46
3-2-3 數據處理 48
3-3 實驗測試 50
3-3-1 實驗系統 50
3-3-2 測試條件 50
3-3-3 數據處理 51
第四章 結果與討論 52
4-1 數值模擬結果 52
4-1-1 模擬模組驗證 52
4-1-2 數值模擬流場與微粒軌跡 56
4-2 流量對虛擬衝擊器影響 62
4-2-1 總進氣流量影響 Q effect 62
4-2-2 次要流比影響 r effect 70
4-2-3 微粒交錯現象 Particle Crossing Phenomenon 81
4-3 構形對虛擬衝擊器影響 86
4-3-1 漸縮區構形 86
4-3-2 收集口構形 96
4-4 實驗測試結果 99
4-4-1 總進氣流量對虛擬衝擊器影響 Q effect (實驗) 99
4-4-2 次要流比對虛擬衝擊器影響 r effect (實驗) 103
4-4-3 實驗與數值模擬比較 106
第五章 結論 112
5-1 模擬模組 112
5-2 流量影響 112
5-3 構形影響 114
5-4 實驗測試 115
5-5 應用 115
5-5-1 粒徑篩分器 115
5-5-2 濃縮器 116
參考文獻 117
參考文獻 1. Pope III, C.A., et al., Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution. The Journal of the American Medical Association, 2002. 287(9): p. 1132-1141.
2. Englert, N., Fine Particles and Human Health—A Review of Epidemiological Studies. Toxicology Letters, 2004. 149(1–3): p. 235-242.
3. Cocheo, C., P. Sacco, and L. Zaratin, Assessment of Human Exposure to Air Pollution, in Encyclopedia of Environmental Health, O.N. Editor-in-Chief: Jerome, Editor. 2011, Elsevier: Burlington. p. 230-237.
4. Bernstein, J.A., et al., Health Effects of Air Pollution. Journal of Allergy and Clinical Immunology, 2004. 114(5): p. 1116-1123.
5. Brunekreef, B. and S.T. Holgate, Air Pollution and Health. The Lancet, 2002. 360(9341): p. 1233-1242.
6. Weber, R.J., et al., A Particle-into-Liquid Collector for Rapid Measurement of Aerosol Bulk Chemical Composition. Aerosol Science and Technology, 2001. 35(3): p. 718-727.
7. Alleman, L.Y., et al., PM10 Metal Concentrations and Source Identification Using Positive Matrix Factorization and Wind Sectoring in a French Industrial Zone. Atmospheric Research, 2010. 96(4): p. 612-625.
8. Khan, M.F., K. Hirano, and S. Masunaga, Quantifying the Sources of Hazardous Elements of Suspended Particulate Matter Aerosol Collected in Yokohama, Japan. Atmospheric Environment, 2010. 44(21–22): p. 2646-2657.
9. Kim, H.T., et al., Experimental Study of Small Virtual Cyclones as Particle Concentrators. Journal of Aerosol Science, 2002. 33(5): p. 721-733.
10. Lim, K.S., et al., Particle Collection and Concentration for Cyclone Concentrators. Aerosol Science and Technology, 2005. 39(2): p. 113-123.
11. Marple, V.A. and K. Willeke, Impactor design. Atmospheric Environment (1967), 1976. 10(10): p. 891-896.
12. Hering, S.V., R.C. Flagan, and S.K. Friedlander, Design and Evaluation of New Low-Pressure Impactor. I. Environmental Science & Technology, 1978. 12(6): p. 667-673.
13. Hering, S.V., et al., Design and Evaluation of a New Low-Pressure Impactor. 2. Environmental Science & Technology, 1979. 13(2): p. 184-188.
14. Rao, A.K. and K.T. Whitby, Non-Ideal Collection Characteristics of Inertial Impactors—I. Single-Stage Impactors and Solid Particles. Journal of Aerosol Science, 1978. 9(2): p. 77-86.
15. Conner, W.D., An Inertial-Type Particle Separator for Collecting Large Samples. Journal of the Air Pollution Control Association, 1966. 16(1): p. 35-38.
16. Barr, E.B., et al., Aerosol Concentrator Design, Construction, Calibration, and Use. Aerosol Science and Technology, 1983. 2(4): p. 437-442.
17. Wu, J.J., D.W. Cooper, and R.J. Miller, Virtual Impactor Aerosol Concentrator for Cleanroom Monitoring. The Journal of Environmental Sciences, 1989. 32(4): p. 52-56.
18. Sioutas, C., et al., Development and Evaluation of a Prototype Ambient Particle Concentrator for Inhalation Exposure Studies. Inhalation Toxicology, 1995. 7(5): p. 633-644.
19. Sioutas, C., S. Kim, and M. Chang, Development and Evaluation of a Prototype Ultrafine Particle Concentrator. Journal of Aerosol Science, 1999. 30(8): p. 1001-1017.
20. Kim, D.S., M.C. Kim, and K.W. Lee, Design and Performance Evaluation of Multi-Nozzle Virtual Impactors for Concentrating Particles. Particle & Particle Systems Characterization, 2000. 17(5-6): p. 244-250.
21. Ding, Y., et al., Development of a High Volume Slit Nozzle Virtual Impactor to Concentrate Coarse Particles. Aerosol Science and Technology, 2001. 34(3): p. 274-283.
22. Haglund, J.S., S. Chandra, and A.R. McFarland, Evaluation of a High Volume Aerosol Concentrator. Aerosol Science and Technology, 2002. 36(6): p. 690-696.
23. Romay, F.J., et al., A High-Performance Aerosol Concentrator for Biological Agent Detection. Aerosol Science and Technology, 2002. 36(2): p. 217-226.
24. Sioutas, C., P. Koutrakis, and R.M. Burton, A Technique to Expose Animals to Concentrated Fine Ambient Aerosols. Environmental Health Perspectives, 1995. 103(2): p. 172-177.
25. Solomon, P.A., J.L. Moyers, and R.A. Fletcher, High-Volume Dichotomous Virtual Impactor for the Fractionation and Collection of Particles According to Aerodynamic Size. Aerosol Science and Technology, 1983. 2(4): p. 455-464.
26. Fu, X.K., et al., New Size Sorting Technology for Superconducting Powders. Applied Superconductivity, IEEE Transactions on, 2003. 13(2): p. 3494-3497.
27. Chen, B.T., H.C. Yeh, and M.A. Rivero, Use of Two Virtual Impactors in Series as an Aerosol Generator. Journal of Aerosol Science, 1988. 19(1): p. 137-146.
28. Ding, Y., Y. Pang, and D.J. Eatough, High-Volume Diffusion Denuder Sampler for the Routine Monitoring of Fine Particulate Matter: I. Design and Optimization of the PC-BOSS. Aerosol Science and Technology, 2002. 36(4): p. 369-382.
29. Chen, B.T., H.C. Yeh, and Y.S. Cheng, A Novel Virtual Impactor: Calibration and Use. Journal of Aerosol Science, 1985. 16(4): p. 343-354.
30. Xu, X., A Study of Virtual Impactor. University of Minnesota, Minneapolis, 1991.
31. Marple, V.A. and C.M. Chien, Virtual Impactors: a Theoretical Study. Environmental Science & Technology, 1980. 14(8): p. 976-985.
32. Masuda, H., D. Hochrainer, and W. Stöber, An Improved Virtual Impactor for Particle Classification and Generation of Test Aerosols with Narrow Size Distributions. Journal of Aerosol Science, 1979. 10(3): p. 275-287.
33. Boulter, J.E., et al., Design and Performance of a Pumped Counterflow Virtual Impactor. Aerosol Science and Technology, 2006. 40(11): p. 969-976.
34. Loo, B.W. and J.M. Jaklevic, An Evaluation of the ERC Virtual Impactor. Lawrence Berkelev Laboratory, University of California Berkeley, California 94720, 1973.
35. McFarland, A.R., C.A. Ortiz, and R.W. Bertch, Particle Collection Characteristics of a Single-Stage Dichotomous Sampler. Environmental Science & Technology, 1978. 12(6): p. 679-682.
36. Loo, B.W. and C.P. Cork, Development of High Efficiency Virtual Impactors. Aerosol Science and Technology, 1988. 9(3): p. 167-176.
37. Kim, T.K., et al., Visualization of Defect Particle Transmission to the Major Flow of a Slit Virtual Impactor. Aerosol Science and Technology, 2004. 38(9): p. 870-880.
38. Marple, V.A. and B.A. Olson, History of Virtual Impactors. Aerosol Science and Technology: History and Reviews, 2011.
39. Chen, B.T. and H.C. Yeh, An Improved Virtual Impactor: Design and Performance. Journal of Aerosol Science, 1987. 18(2): p. 203-214.
40. Novick, V.J. and J.L. Alvarez, Design of a Multistage Virtual Impactor. Aerosol Science and Technology, 1987. 6(1): p. 63-70.
41. Liu, B.Y.H., et al., Airborne Particulate Matter and Spacecraft Internal Environments. SAE Technical Paper No. 911476, 1991.
42. Koch, W., W. Dunkhorst, and H. Lodding, Design and Performance of a New Personal Aerosol Monitor. Aerosol Science and Technology, 1999. 31(2-3): p. 231-246.
43. Chein, H. and D.A. Lundgren, A Virtual Impactor with Clean Air Core for the Generation of Aerosols with Narrow Size Distributions. Aerosol Science and Technology, 1993. 18(4): p. 376-388.
44. Marple, V.A., B.Y.H. Liu, and R.M. Burton, High-volume Impactor for Sampling Fine and Coarse Particles. Journal of the Air & Waste Management Association, 1990. 40(5): p. 762-767.
45. Sioutas, C., P. Koutrakis, and R.M. Burton, Development of a Low Cutpoint Slit Virtual Impactor for Sampling Ambient Fine Particles. Journal of Aerosol Science, 1994. 25(7): p. 1321-1330.
46. Gotoh, K. and H. Masuda, Improvement of the Classification Performance of a Rectangular Jet Virtual Impactor. Aerosol Science and Technology, 2000. 32(3): p. 221-232.
47. Hu, S. and A.R. McFarland, Circumferential-Slot Virtual Impactors with Stable Flow. Aerosol Science and Technology, 2008. 42(9): p. 748-758.
48. Seshadri, S., et al., A Circumferential Slot In-Line Virtual Impactor. Aerosol Science and Technology, 2008. 42(1): p. 40-49.
49. Hari, S., A.R. McFarland, and Y.A. Hassan, CFD Study on the Effects of the Large Particle Crossing Trajectory Phenomenon on Virtual Impactor Performance. Aerosol Science and Technology, 2007. 41(11): p. 1040-1048.
50. Sioutas, C., et al., Fine Particle Concentrators for Inhalation Exposures—Effect of Particle Size and Composition. Journal of Aerosol Science, 1997. 28(6): p. 1057-1071.
51. Bergman, W., et al., High Air Flow, Low Pressure Drop, Bio-Aerosol Collector Using a Multi-Slit Virtual Impactor. Journal of Aerosol Science, 2005. 36(5–6): p. 619-638.
52. Ding, Y. and P. Koutrakis, Development of a Dichotomous Slit Nozzle Virtual Impactor. Journal of Aerosol Science, 2000. 31(12): p. 1421-1431.
53. Hari, S., Y.A. Hassan, and A.R. McFarland, Optimization Studies on a Slit Virtual Impactor. Particulate Science and Technology, 2006. 24(2): p. 105-136.
54. Hinds, W.C., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York, Wiley-Interscience, 1982. 1: p. 442.
55. Fang, W.C., Numerical Simulation of ESP Type Air-Liquid Interface (ALI) Cell Exposure System Using COMSOL Multiphysics. 2013.
56. Fuchs, N.A., The Mechanics of Aerosols. Pergamon Press: New York, 1964.
57. Haglund, J.S., Two Linear Slot Nozzle Virtual Impactors for Concentration of Bioaerosols. 2005, Texas A&M University.
58. Chang, P.Y., Development and Performance Charaterization of a Steam-Based Aerosol Collector. 2015.
指導教授 蕭大智(Ta-Chih Hsiao) 審核日期 2015-10-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明