國立中央大學 105 學年度碩士班考試入學試題

所別: 通訊工程學系碩士班 不分組(一般生)

共2頁 第1頁

科目: 工程數學(機率、線性代數)

本科考試禁用計算器

*請在答案卷(卡)內作答

- 1. (15%) The duration (in minutes) of a cell-phone call is modeled as an exponential probability density function. The expected value of the duration of a mobile phone call is 5 minutes.
- (1) (5%) Find the cumulative distribution function of the duration (in minutes) of a cell-phone call.
- (2) (10%) Find the standard deviation of the duration (in minutes) of a cell-phone call.
- 2. (20%) For continuous random variables X and Y with the joint probability density function

$$f_{X,Y}(x,y) = \begin{cases} 2 & 0 \le y \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

- (1) (10%) Find the expected value of X.
- (2) (10%) Find the conditional expected value E[X|Y=0.5].
- 3. (15%) The expected value vector of the continuous random vector $\mathbf{X} = [X_1 \ X_2]^T$

is
$$\begin{bmatrix} 0 & 0 \end{bmatrix}^T$$
. The covariance matrix of **X** is $\begin{bmatrix} 4 & 3 \\ 3 & 9 \end{bmatrix}$. The continuous random vector

Y is
$$[Y_1 \ Y_2]^T$$
 where $Y_1 = 2X_1 - X_2$ and $Y_2 = X_1 + 3X_2$.

- (1) (5%) Find the covariance matrix of Y.
- (2) (10%) Find the correlation matrix of Y.

注:背面有試題

國立中央大學 105 學年度碩士班考試入學試題

所別: 通訊工程學系碩士班 不分組(一般生)

共2頁 第2頁

科目: 工程數學(機率、線性代數)

本科考試禁用計算器

*請在答案卷(卡)內作答

- 4. (5%) Show that an $n \times n$ matrix A is nonsingular if and only if the column vectors of A form a basis for \mathbb{R}^n .
- 5. (15 %) Let $T: V \to W$ be a linear transformation. dim(.), Im(.) and Ker(.) mean the dimension, image and kernel of a subspace (.) respectively.
 - (a) (5 %) Show that T is one-to-one if and only if $Ker(T) = \{0\}$.
 - (b) (5 %) Show that if dim(V) = dim(W) is finite, then T is one-to-one if and only if T is onto.
 - (c) (5 %) Let $T: M_{n \times n} \to M_{n \times n}$ by T(A) = CA for all A in $M_{n \times n}$. If BC = I where B and C are $n \times n$ matrices, show that also CB = I.
- 6. (5%) Let $A = \begin{bmatrix} 4 & 7 & -2 \\ 0 & 25 & 4 \\ 0 & 0 & 9 \end{bmatrix}$. Find a matrix B such that $B^2 = A$.
- 7. (10%) Give that an invertible matrix $A = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$ can map the line y = 5x + 2 into another line y'. Find the equation of the line y'.
- 8. (15%) <u>Use the eigenvalues method</u> to solve the initial value problem of a system with linear differential equations:

$$y_1'' = -3y_2 + y_1' + 3y_2'$$

$$y_2'' = 3y_1 + 3y_1' - y_2'$$

$$y_1(0) = 1, y_2(0) = 0, y_1'(0) = -3, y_2'(0) = 2$$

- (a) (2 %) Give the coefficient matrix for this system.
- (b) (4 %) Find the eigenvalues of this system.
- (c) (4 %) Find the eigenvectors corresponding to all eigenvalues.
- (d) (5 %) Find the solution of this system.

注:背面有試題