博碩士論文 102226053 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:13.59.141.187
姓名 張勝涵(Sheng-Han Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 於離子交換波導表面組裝三角晶格之奈米粒子陣列實現具指向性空間解析之拉曼光譜
相關論文
★ 以側磨光纖半塊材耦合器激發微米球型共振腔基模之研究★ 以氬離子雷射對玻璃材料加工之研究
★ 以裸光纖激發球共振腔之共振譜研究★ 錐狀平面波導光柵結構與微米小球共振腔之光耦合效率研究
★ 溶膠凝膠法合成以鉭元素為基礎的全固態電致變色元件★ S型彎曲波導與微米小球共振腔之光耦合效率研究
★ 錐狀光纖與微米球共振腔耦合之研究與應用★ 以鎖模鈦藍寶石飛秒雷射雙光子聚合製作光波導微結構之研究
★ 利用光子晶體的能隙邊緣移動達成全光開關之研究★ 利用繞射圖形檢測錐狀光纖的製造與品質
★ 利用雙光子聚合技術製作高耦合效率波導陣列光纖耦合器★ 光學印刷電路板之製作與特性分析
★ 鈉鉀離子交換波導之製作及其表面消逝波之研究★ 拉伸式長週期光纖光柵的模態色散現象研究
★ 可調式窄頻液晶濾波器★ 基於D形光纖之拉曼感測器模擬與設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究將波導與表面增強拉曼散射結合,利用於離子交換波導表面之週期性金屬結構使拉曼散射具有空間指向性。藉由透鏡後孔徑成像之實驗分別以綠光與紅光雷射為操作波長得到之出射角度分別為19度及7.3度,利用相位匹配之理論估計以直徑500奈米之聚苯乙烯小球製作之週期性銀結構與鈉-鉀離子交換波導之模態耦合之出射角度,與實驗之結果比較發現有一定程度的吻合。然而,因週期性結構之製程不夠完善的緣故,例如:晶格之排列、錯位與點缺陷,使得實驗與理論的結果不匹配。然而,目前得到的結果證明利用此結構能量測具空間解析之指向性拉曼散射,若能改善週期性結構之組裝結果,便能不使用光譜儀就得到空間解析拉曼散射。
摘要(英) In this study, self-assembled periodic particle array(PPA) was investigated on ion-exchanged waveguide which enables surface enhance Raman scattering with directivity. Through back pupil plane imaging experiments, the output angles for red(=632.8nm) and green(=532nm) light are measured to be 7.3o and 19o, corresponding to 0.135o/nm. This result is in close agreement with that obtained by the grating phase matching theory for the PPA atop ion-exchange waveguide. However, weak controlling ability in the fabrication of the PPA led to imperfections such as different lattice orientations, dislocations and point defects which all contribute to the discrepancy between the experimental and theoretical result. Nevertheless, the current results have promised the capability to spatially resolve the Raman scattered light without using a bulky spectrometer with improved quality of the PPA.
關鍵字(中) ★ 週期性金屬結構
★ 光柵繞射
★ 波導
關鍵字(英) ★ PPA
★ Grating
★ waveguide
論文目次 目錄
摘要 i
Abstract ii
目錄 ii
圖目錄 iii
表目錄 v
第一章 緒論 1
1.1 前言 1
1.2 研究背景 3
1.2.1拉曼散射 3
1.2.2表面增強拉曼散射 4
1.2.3Beamed 拉曼 6
1.3 研究動機與目的 8
1.4 論文架構概述 9
第二章 研究方法 10
2.1 金屬物質特性 10
2.1.1杜德模型 10
2.2金屬表面電漿共振 17
2.2.1表面電漿簡介 17
2.2.2介電質與金屬介面之表面電漿波 18
2.3 光柵介紹與原理 22
2.3.1一維光柵繞射角與波長的關係 23
2.3.2二維光柵與倒晶格(Reciprocal lattice) 24
2.3.3波導(Waveguide)表面之週期性結構與出射光之關係 26
2.4孔徑平面成像(Image of pupil plane) 29
第三章樣品製備與實驗架構 32
3.1 離子交換波導製作過程 32
3.2 奈米小球鋪排與週期性金屬結構 36
3.3 波導模態與週期性金屬結構耦合之出射光角度量測架構 40
第四章 實驗結果與討論 43
4.1物鏡孔徑成像面之校正實驗 43
4.2不同入射光波長之出射角度 45
4.3數值模擬與實驗得到之出射角度分析 51
第五章 結論與未來展望 57
參考文獻 59
參考文獻 [1] C.V. Raman and K.S. Krishnan, ”A new type of radiation”. Nature121 p.501-502,1928.
[2] M. Fleischman, P.J. Hendra and A.J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode“. Chem.Phys. Lett. 26, p.163-166, 1974.
[3] D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode “. J. Electroanal. Chem. 84, p.1, 1977.
[4] M.G. Albrecht and J.A. Creghton , “Anomalously intense Raman spectra of pyridine at a silver electrode” . J. Am. Chem. Soc. 99(15),p. 5215-5217, 1977.
[5] P. Hildebrandt and M. Stockburger, “Surface-Enhanced Resonance Raman Spectroscopy of Rhodamine 6G Adsorbed on Colloidal Silver“. J. Phys. Chem.88, p.5935, 1984.
[6] J.T. Golab and R.P. Van Duyne “A surface enhanced hyper‐Raman scattering study of pyridine adsorbed onto silver: Experiment and theory“. J. Chem. Phys 88, 7942-7951, 1988.
[7] K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, and M.S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) “. Phys. Rev. Lett. 78, p.1667, 1997.
[8] S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering“. Sci. 275, p.1102, 1997.
[9] Y. Zhao, I. Avrutsky, and B. Li, “Optical coupling between monocrystalline colloidal crystals and a planar waveguide”. Appl. Phys. Lett. 75, p3596-3598 ,1999
[10] Ivan Avrutsky, Vladimir Kochergin, and Yang Zhao, Member,” Optical Demultiplexing in a Planar Waveguide with Colloidal Crystal”. IEEE photonics technology letters, vol.12,no.12, p1647-1649,2000
[11] Y. Zhao and I. Avrutsky, “Two-dimensional colloidal crystal corrugated waveguide”. Opt. Lett., vol. 24, p 817–819, 1999.
[12] Yizhuo Chu, Wenqi Zhu, Dongxing Wang and Kenneth B. Crozier,” Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate”. optics express, Vol. 19, No. 21,p20054-20068,2011
[13] Timur Shegai, Bjorn Brian, Vladimir D. Miljkovic, and Mikael Kall,” Angular Distribution of SurfaceEnhanced Raman Scattering from Individual Au Nanoparticle Aggregates”. ACS nano, vol.5, no. 3 ,p2036–2041 ,2011
[14] William Streifer, Donald R. Scifres and Robert D. Burnham, “Coupled Wave Analysis of DFB and DBR Lasers”. IEEE J. Quantum elec. Vol.QE13, NO.4,1977.
[15] Drude and Paul, “Zur Elektronentheorie der metalle“. Annalen der Physik. 306, p.566, 1900.
[16] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals” . Phys. Rev. B 6, p.4370, 1972.
[17] R.W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum“. Phil. Mag. 4, p.396, 1902.
[18] U.Fano,”The theory of anomalous diraction gratings and of quasistationary waves on metallic surfaces”. J. Opt. Soc. Am. 31, p.213, 1941.
[19] Hessel, and A. A. Oliner, “ A New Theory of Wood’s Anomalies on Optical Gratings” .Appl. Opt., 4, 1275, 1965.
[20] R. H. Ritchie, ′′ Plasma losses by fast electrons in thin films′′. Phys. Rev. 106, p.874, 1957.
[21] Otto, ′′Excitation of nonradiative surface plasma waves in silver by method of frustrated total reection ′′. Z. Phys. 216, p.398, 1968.
[22] E. Kretschm and H. Raether, “Radiative decay of non radiative surface plasmons excited by light“. Z. Naturf. 23A, p.2135, 1968.
[23] C. Nylander, B. Liedberg, and T. Lind, “Gas Detection by Means of SurfacePlasmon Resonance”. Sens. and Actuators, 3,79,1982.
[24] Clifford R. Pollock and Michal Lipson,Integrated photonic. Boston/Dordrecht/London, Springer, 2003,Chapter6.
[25] G. L. Yip and J. Albert, “Characterization of planar optical waveguides by K+-ion exchange in glass”. , Optics Letters, Vol. 10, No. 3 ,p151-153,1985.
[26] Stefano palomba, Hayk harutyunyan and Lukas novotny, “Nonlinear plasmonics at planar metal surfaces”. Phil. Trans. R. Soc. A 369, 3497 ,2011.
[27] N. Denkov, et al., “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir. 8(12), p. 3183-3190, 1992
[28] Peter A. Kralchevskyand Nikolai D. Denkov, “Capillary forces and structuring in layers of colloid particles”. Current Opinionin Colloid & Interface Science 6,p383-401,2001.
[29] R. Micheletto, H. Fukuda and M. Ohtsut, “A simple method for the production of a two-dimensional, ordered array of small latex particles”. Langmuir, Vol. 11, No. 9,p3333-3336, 1995
[30] Traci R. Jensen, Michelle Duval Malinsky, Christy L. Haynes, and Richard P. Van Duyne, “Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles”. J. Phys. Chem. B, 104, 10549-10556,2000
[31] Martin N.Weiss and Ramakant Srivastava, “Determination of ion exchanged channel waveguide profile parameters by mode-index measurements”. Applied optics Vol. 34, No. 3,1995
指導教授 戴朝義(Chao-Yi Tai) 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明