博碩士論文 102523025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.188.29.49
姓名 江柏緯(Bo-Wei Jiang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 修正型截尾平均數 FxLMS 法用於主動噪音控制以減少脈衝噪音
(Modified Trimmed Mean FxLMS for Impuslive Noise Reduction in ANC)
相關論文
★ 利用二元關聯法之簡易指紋辨識★ 使用MMSE等化器的Filterbank OFDM系統探討
★ Kalman Filtering應用於可適性載波同步系統之研究★ 無線區域網路之MIMO-OFDM系統設計與電路實現
★ 包含通道追蹤之IEEE 802.11a接收機設計與電路實現★ 時變通道下的OFDM傳輸系統設計: 基於IEEE 802.11a標準
★ MIMO-OFDM系統各天線間載波頻率偏差之探討 與收發機硬體實現★ 使用雜散式領航訊號之DVB-T系統通道估測演算法與電路實現
★ 數位地面視訊廣播系統同步模組 之設計與電路實現★ 適用於移動式正交分頻多工通訊系統的改良型時域通道響應追蹤演算法
★ 正交分頻多工系統通道估測基於可適性模型化通道參數估測★ 以共同項載波頻率偏移補償於正交分頻多重存取系統中減少多重存取干擾之方法
★ 正交分頻多工系統之資料訊號裁剪雜訊消除★ 適用於正交分頻多工通訊系統的改良型決策反饋之卡爾曼濾波通道估測器
★ 半盲目通道追蹤演算法使用於正交分頻多工系統★ 正交分頻多重存取以共同項載波頻率偏移補償以達到最小均方誤差之方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) FxLMS(Filtered-X Least Mean Square) 演算法已經廣泛運用在主動噪音控制 (Active Noise Control,ANC),它在一般高斯的情況下會有良好的收斂效果,已經有許多研究在討論如何改善它的效能,然而在實際應用中,ANC 系統會接收突然產生的異常訊號,我們稱之為脈衝噪音 (Impuslive Noise,IN),這可能會使得傳統的FxLMS 演算法性能會嚴重下降或收斂失敗,過去有一些文獻已經有在討論這個部分,但許多提出的解決方案都是需要依賴預先確定的參數,在本文中,對於脈衝噪音問題主要採取截尾平均型方法 (Trimmed Mean),他是來自於順序統計原理,新提出的 FxLMS演算法跟過去文獻不同,已不需要利用事前條件來定義參數,透過模擬結果,我們將跟過去的方法做比較,所提出的演算法具有更好的 (Average Noise Reduction,ANR) 性能。
摘要(英) The Filtered-X Least Mean Square (FxLMS) algorithm has been widely used for Active Noise Control (ANC), which has a satisfying convergence performance in the Gaussian noise. Hence, there have been many researches studying how to improve its performance in the literature. Nevertheless, in practical applications, the ANC system can receive an unusual signal suddenly generated and called the impulsive noise (IN),which can result in serious performance degradation or convergence failure to the conventional FxLMS algorithm. Some references can be found discussing this issue, but many of the proposed solutions highly relies on the setup of pre-determined parameters dependent of special stituations for the modified FxLMS algorithms. In this thesis, the IN problem is dealt with mainly applying the trimmed mean method, which is adapted from order statistics. With the new FxLMS algorithm, there is no prerequisite to determine the parameters as required in the previous works.
Through simulation results, we will show that the proposed method has better average noise reduction (ANR) performance compared to previous works.
關鍵字(中) ★ 主動噪音控制
★ 脈衝噪音
關鍵字(英) ★ Active Noise Control
★ FxLMS
★ Order Statisties
★ Trimmed Mean
★ Impuslive Noise
論文目次 目 錄
中文摘要 . . . . . . . . . . . . . . . . . . i
英文摘要 . . . . . . . . . . . . . . . . . iii
目錄 . . . . . . . . . . . . . . . . . . . . i
圖目錄 . . . . . . . . . . . . . . . . . . ii
表目錄 . . . . . . . . . . . . . . . . . . iii
第 1 章序論 . . . . . . . . . . . . . . . . 1
1.1 前言 . . . . . . . . . . . . . . . . . . 1
1.2 章節架構 . . .. . . . . .. . . . . . . . 5
第 2 章ANC 的基本架構 .. . . . . . . . . . . 6
2.1 FxLMS 演算法 . . . . . . . . . . . . . . 6
2.2 在線建模架構 . .. . . . . . . . . . . . 10
2.3 脈衝雜訊 . . . . . . . . . . . . . . . 12
第 3 章新架構搭配 Trimmed Mean 穩建的方法. 14
3.1 基於穩健統計 M-估計 FxLMS . . . . . . . 15
3.1.1 Hampel 函數 . . . . . . . . . . . . . 17
3.1.2 Huber 函數 . . . . . . . . . . . . . 18
3.2 脈衝預先處理架構 . . . . . . . . . . . 21
3.3 切換演算法的架構 . . . . . . . . . . . 22
3.4 截尾平均數 FxLMS(Trm-FxLMS) . . . . . . 23
3.4.1 中值 FxLMS(Med-FxLMS) . . . . . . . . 27
3.4.2 平均 FxLMS(Mean-FxLMS) .. . . . . . . 27
3.4.3 Window size . . . . . . . . . . . . . 28
3.5 在線 H 處理 . . . . . . . . . . . . . . 28
第 4 章系統模擬與結果分析 . . . . . . . . . 30
4.1 其他演算法介紹以及參數設定 . .. . . . . 34
4.2 在線模組確認是否正確 . . .. . . . . . . 38
4.3 脈衝預先處理的影響 . . . .. . . . . . . 39
4.4 兩個不同的通道進行不同 case 分析結果 .. 42
4.4.1 第一組 Model . . . . . . . . . . . . 42
4.4.2 第二組 Model . . . . . . . . . . . . 51
第 5 章結論 . . . . . . . . . . . . . . . . 58
參考文獻 . . . . .. . . . . . . . . . . . . 59
參考文獻 [1] S. Elliott and P. Nelson, “Active noise control,” IEEE Signal Pro-cessing Magazine, vol. 10, no. 4, pp. 12–35, Oct 1993.
[2] S. M. Kuo and D. Morgan, Active Noise Control Systems: Algorithms and DSP Implementations, 1st ed. New York, NY, USA:John Wiley & Sons, Inc., 1995.
[3] S. M. Kuo and D. R. Morgan, “Active noise control: a tutorial review,” Proceedings of the IEEE, vol. 87, no. 6, pp. 943–973, Jun1999.
[4] S. J. Elliott, Signal Processing for Active Control. London, U.K.:Academic, 2001.
[5] L. A. Berry, “Understanding middleton’s canonical formula for class a noise,” IEEE Transactions on Electromagnetic Compatibility, vol. EMC-23, no. 4, pp. 337–344, Nov 1981.
[6] K. Vastola, “Threshold detection in narrow-band non-gaussian noise,” IEEE Transactions on Communications, vol. 32, no. 2, pp.134–139, Feb 1984.
[7] M. Ghosh, “Analysis of the effect of impulse noise on multicarrier and single carrier qam systems,” IEEE Transactions on Communications, vol. 44, no. 2, pp. 145–147, Feb 1996.
[8] R. Pighi, M. Franceschini, G. Ferrari, and R. Raheli, “Fundamental performance limits of communications systems impaired by impulse noise,” IEEE Transactions on Communications, vol. 57, no. 1,pp. 171–182, January 2009.
[9] M. Shao and C. L. Nikias, “Signal processing with fractional lower order moments: stable processes and their applications,” Proceedings of the IEEE, vol. 81, no. 7, pp. 986–1010, Jul 1993.
[10] C. L. Brown and A. M. Zoubir, “A nonparametric approach to signal detection in impulsive interference,” IEEE Transactions on Signal Processing, vol. 48, no. 9, pp. 2665–2669, Sep 2000.
[11] G. A. Tsihrintzis and C. L. Nikias, “Performance of optimum and suboptimum receivers in the presence of impulsive noise modeled as an alpha-stable process,” IEEE Transactions on Communications,vol. 43, no. 2/3/4, pp. 904–914, Feb 1995.
[12] E. E. Kuruoglu, W. J. Fitzgerald, and P. J. W. Rayner, “Near optimal detection of signals in impulsive noise modeled with a symmetric /spl alpha/-stable distribution,” IEEE Communications Letters,vol. 2, no. 10, pp. 282–284, Oct 1998.
[13] R. Leahy, Z. Zhou, and Y.-C. Hsu, “Adaptive filtering of stable processes for active attenuation of impulsive noise,” in International Conference on Acoustics, Speech, and Signal Processing, 1995.ICASSP-95., 1995, vol. 5, May 1995, pp. 2983–2986 vol.5.
[14] X.Sun, S.M.Kuo, and G.Meng, “Adaptive algorithm for active control of impulsive noise,” Journal of Sound and Vibration, vol. 291,no. 1-2, pp. 516–522, March 2006.
[15] M. T. Akhtar and W. Mitsuhashi, “Improved adaptive algorithm for active noise control of impulsive noise,” in 2008 51st Midwest Symposium on Circuits and Systems, Aug 2008, pp. 330–333.
[16] M. Akhtar and W. Mitsuhashi, “Robust adaptive algorithm for active noise control of impulsive noise,” in IEEE International Conference on Acoustics, Speech and Signal Processing, 2009. ICASSP 2009., April 2009, pp. 261–264.
[17] P. Petrus, “Robust huber adaptive filter,” IEEE Transactions on Signal Processing, vol. 47, no. 4, pp. 1129–1133, Apr 1999.
[18] P. Thanigai, S. M. Kuo, and R. Yenduri, “Nonlinear active noise control for infant incubators in neo-natal intensive care units,” in 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP ’07, vol. 1, April 2007, pp. I–109–I–112.
[19] L. Wu, H. He, and X. Qiu, “An active impulsive noise control algorithm with logarithmic transformation,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 19, no. 4, pp. 1041–1044, May 2011.
[20] L. J. Eriksson and M. A. Allie, “Use of random noise for online transducer estimate in an adaptive active attenuation system,” J.Acoust. Soc. Amer., vol. 85, pp. 797–802, Feb 1989.
[21] C. Bao, P. Sas, and H. V. Brussel, “Comparison of two-on-line identification algorithms for active noise control,” in in Proc.Recent Advances in Active Control of Sound and Vibration, 1993, pp. 38–51.
[22] S. M. Kuo and D. Vijayan, “Optimized secondary path modeling technique for active noise control systems,” in Circuits and Systems,1994. APCCAS ’94., 1994 IEEE Asia-Pacific Conference on, Dec 1994, pp. 370–375.
[23] M. Zhang, H. Lan, and W. Ser, “Cross-updated active noise control system with online secondary path modeling,” IEEE Transactions on Speech and Audio Processing, vol. 9, no. 5, pp. 598–602, Jul 2001.
[24] H. A. David and H. N. Nagaraja, Order Statistics, 3rd ed. New York, NY, USA: John Wiley & Sons, Inc., 2004.
[25] J.-K. Kim and L. Davisson, “Adaptive linear estimation for stationary m-dependent processes,” IEEE Transactions on Information Theory, vol. 21, no. 1, pp. 23–31, Jan 1975.
[26] J. Bednar and T. Watt, “Alpha-trimmed means and their relationship to median filters,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 32, no. 1, pp. 145–153, Feb 1984.
[27] T. Haweel, “Median lms algorithm,” Electronics Letters, vol. 25,no. 8, pp. 520–522, April 1989.
[28] G. Williamson, P. Clarkson, and W. Sethares, “Performance characteristics of the median lms adaptive filter,” IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 667–680, Feb 1993.
[29] T. I. Haweel and P. M. Clarkson, “A class of order statistic lms algorithms,” IEEE Transactions on Signal Processing, vol. 40, no. 1,pp. 44–53, Jan 1992.
[30] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection. New York, NY, USA: John Wiley & Sons, Inc., 1987.
指導教授 張大中(Dah-Chung Chang) 審核日期 2016-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明