以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:15 、訪客IP:3.142.135.116
姓名 邱莉文(Li-Wen Chiu) 查詢紙本館藏 畢業系所 資訊工程學系 論文名稱 基於3D感應器與筆順時序變化之空中手寫身分認證系統
(Air-writing Authentication Using 3D Sensor and Time Order Stroke Context)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在科技越來越進步的這個時代,已經不再設限於使用滑鼠或鍵盤來控制儀器,隨著近幾年人機互動越來越興起,現在可在公共區域或是家中利用空中手寫或是手勢來控制儀器,而人機互動更是已經廣泛應用在遊戲、娛樂、健康照護、圖形識別、身分認證等等領域之中。
傳統在身分認證,通常是以輸入密碼或攜帶加密金鑰等等方式作為身分認證的依據,但此方式不僅隨時要記得密碼或隨時攜帶金鑰之外,也容易遭他人竊取複製並盜用;相反地,利用空中手寫簽名取得特徵,不但解決了上述的問題,也比起透過人臉、聲紋、指紋、虹膜等等傳統生物認證系統,必須依靠昂貴儀器來取得特徵,更能節省成本。
本論文使用Leap Motion體感裝置來取得使用者的簽名,並尋找簽名軌跡中轉折點的位置,作為筆劃切割的依據,再根據累積筆劃計算Shape Context、轉折點速度及曲率當作特徵,在特徵比對時使用動態時間校正(Dynamic Time Warping,DTW)計算兩筆簽名軌跡之間的距離。在實驗的部分,本論文針對不同閥值和不同比對距離的組合、是否有事先去除偏差過大的資料、資料分群等各種情況下所得到的實驗結果,用以分析本論文所提出的方法,應用在身分認證系統上的效能。由實驗結果顯示,此方法應用在身份認證系統上,確實有很好的效能。摘要(英)
Human-computer interaction has been widely used in the areas of games, health-care, entertainment, pattern recognition, and identity authentication. Due to the booming emerging of technological progress, the limitation of using mouse or keyboard to control 3C device is no longer a must. With the fast development of human-computer interaction recently, it is now possible to use air-handwriting, gesture, and so on to control 3C devices in public areas or at homes.
Traditional identity authentication usually relies heavily on the using of passwords or cryptographic keys. However, it is not only needing to remember the password or keeping the cryptographic key all the time but also easily losing passwords or keys and thereby suffering from password theft. On the contrary, using the unique features of air-handwriting signatures for identity authentication can resolve these problems. Furthermore, it is also cheaper than other biological authentication systems which must rely on expensive devices to acquire features such as face, voiceprint, fingerprints, iris and so forth.
In this thesis, we use Leap Motion to obtain the signatures of users and find the location of turning points in the signature trajectory as the basis for stroke cutting. Then, calculate the Shape Context of accumulate strokes, velocity and curvature of turning points as the features. In features matching, Dynamic Time Warping (DTW) is employed to calculate the distance between two signatures. In our experiments, we try to figure out the experimental results in each case such as combinations of different thresholds and different matching distances no matter whether performing data analysis or data clustering in advance or not to analyze the performance of our proposed method. Experimental results demonstrate the excel performance of our proposed system in identity authentication.關鍵字(中) ★ 空中手寫中文簽名
★ 身分認證
★ 形狀上下文
★ 動態時間校正關鍵字(英) ★ Air-writing Signature Authentication
★ Shape Context
★ Dynamic Time Warping論文目次
摘要 ..........................................................................................................................................i
Abstract ...................................................................................................................................ii
致謝 .......................................................................................................................................iii
目錄 ........................................................................................................................................iv
圖目錄 ....................................................................................................................................vi
表目錄 .................................................................................................................................viii
第一章 緒論 .......................................................................................................................1
1-1 研究動機與目的 ............................................................................................1
1-2 相關研究 ........................................................................................................2
1-3 論文架構 ......................................................................................................10
第二章 背景知識 ............................................................................................................11
2-1 Shape Context ……………………………………………………………..11
2-2 動態時間校正(Dynamic Time Warping) ………………………….……...12
2-3 聚合式階層分群法(Agglomerative hierarchical clustering) ……………..14
2-4 裝置介紹 ......................................................................................................15
第三章 空中手寫身分認證系統 ................................................................................17
3-1 系統流程 ......................................................................................................17
3-2 手寫情境 ......................................................................................................18
3-3 軌跡追蹤 ......................................................................................................19
3-4 採集樣本資料 ..............................................................................................20
3-5 特徵擷取 ......................................................................................................21
3-5-1 簽名軌跡轉折點 ..............................................................................21
3-5-2 累積筆劃之Shape Context ..............................................................22
3-5-3 累積筆劃之轉折點速度及曲率 ......................................................23
3-6 身分認證 ......................................................................................................25
第四章 實驗討論 ............................................................................................................28
4-1 實驗環境 ......................................................................................................28
4-2 資料說明 ......................................................................................................29
4-3 實驗簡述及結果 ..........................................................................................30
4-4 討論與分析 ..................................................................................................56
第五章 結論與未來展望 ..............................................................................................58
5-1 結論 ..............................................................................................................58
5-2 未來展望 ......................................................................................................58
參考文獻 ...........................................................................................................................59參考文獻
[1] S. Belongie, J. Malik, J. Puzicha, "Shape Context: A New Descriptor for Shape Matching and Object Recognition", Advances in Neural Information Processing Systems 13: Proc. 2001 Conf., pp. 831-837, 2001.
[2] 連俊宇, “基於Leap Motion 之三維手寫中文文字特徵擷取,” 國立中央大學 資訊工程學系碩士論文, 2014.
[3] 凌于翔, “基於生物特徵之空中手寫中文簽名身分認證,” 國立中央大學 資訊工程學系碩士論文, 2016.
[4] K. Tsuchida, H. Miyao, and M. Maruyama, “Handwritten Character Recognition in the Air by Using Leap Motion Controller,” International Conference on Human-Computer Interaction, pp.534-538, 2015.
[5] S. Vikram, L. Li, and S.Russell, “Handwriting and Gestures in the Air, Recognizing on the Fly,” Proceedings of the CHI ′13 Extended Abstracts on Human Factors in Computing Systems, Paris, France, 2013.
[6] S. Kamaishi and R.Uda, “Biometric Authentication by Handwriting Using Leap Motion,” Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication, 2016.
[7] R. Aggarwa , S. Swetha, A.M. Namboodiri, J. Sivaswamy, and C. Jawahar, “Online Handwriting Recognition using Depth Sensors,” IEEE International Conference on Document Analysis and Recognition (ICDAR), Aug. 2015.
[8] D. Lee and S. Lee, “Vision-based finger action recognition by angle detection and contour analysis,” Journal of ETRI, vol.33, no.3, pp.415–422, 2011.
[9] A. Schick, D. Morlock, and C. Amma, “Vision-Based Handwriting Recognition for Unrestricted Text Input in Mid-Air,” Proceedings of the 14th ACM international conference on Multimodal Interaction, pp.217-220, 2012.
[10] B. C. Bhokse, and B. S. Thakare, “Devanagari Handwriting Recognition System using Dynamic Time Warping Algorithm,” International Journal of Computer Applications, pp.7-13 , Aug. 2012.
[11] N. Forhad, B. Poon, M A. Amin and H. Yan, “Online Signature Verification for Multi-modal Authentication using Smart Phone,” Proceedings of the International MultiConference of Engineers and Computer Scientists(IMECS), pp.328–331, Mar. 2015.
[12] J. Tian, C. Qu, W. Xu, and S. Wang, “KinWrite: Handwriting-Based Authentication Using Kinect,” Proceedings of the 20th Annual Network & Distributed System Security Symposium, 2013.
[13] F.-A. Huang , Chung-Yen Su, and Tsai-Te Chu , “Kinect-Based Mid-Air Handwritten Digit Recognition using Multiple Segments and Scaled Coding,” IEEE International Symposium on Intelligent Signal Processing and Communications Systems, pp. 694-697, Nov. 2013.
[14] C.-Y. Su , F. -A. Huang, C. -Y. Shih, and Y. -T. Chen, “Kinect-Based Midair Handwritten Number Recognition System for Dialing Numbers and Setting a Timer,” IEEE International Conference on Systems, Man and Cybernetics, pp.2127-2130, Oct. 2014.
[15] http://fanli7.net/a/bianchengyuyan/C__/20130418/342270.html
[16] http://mirlab.org/jang/books/dcpr/dpDtw.asp?title=8-4%20Dynamic%20Time%20Warping&language=chinese
[17] http://mropengate.blogspot.tw/2015/06/ai-ch17-6-clustering-hierarchical.html
[18] https://developer.leapmotion.com/documentation/cpp/devguide/Leap_Overview.html
[19] Leap Motion SDK, http://developer.leapmotion.com指導教授 范國清、謝君偉 審核日期 2017-7-27 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare