P RARE 07 R 5 BARLHE HMNERA

piRl T TIM | | 287 #/%®
#8: EHLEEEEEE
AHEREANES *HALEE (F) AL

B (45 BHEIT—)
1.

Consider the following recursive sorting algorithm to sort an array A[] of n numbers:

E-SORT(A, 1, j)

1. if A[i] > A[j]

2 then exchange A[i] < A[j];

3. ifi+t1>j

4 then return; .

5. k< |[G-1+1)3]; // Round down.

6. E-SORT(A,1,j-k); //Sort first two-thirds.

7. .E-SORT(A,i+Xk,j); //Sortlasttwo-thirds.

8. E-SORT(A,1,j-k); //Sort first two-thirds again.

What is the time complexity of the algorithm if it is called as: E-SORT(A, 1, n)?
(@) B(n) (b) O(nlogn) (c) OM™*?) (d) O’ () O(n?)

Follow the previous question. What is the amount of auxiliary space (extra space or temporary
space not including the input array) used by the algorithm E-SORT?
(@ ©(1) (b) B(logn) (c) B(") (&) O@") (¢))

The following statements Sa and Sg about minimum spanning tree (MST) may not be correct.
Assume that the weighted graph G = (V, E) is undirected and connected. Do not assume that

edge weights are distinct unless this is specifically stated. Consider the following two

" statements:

Sa: If the lightest edge in G is unique, then it must be part of every MST of G.

Sg: If G has a cycle with a unique lightest edge e, then e must be part of every MST of G.
(a) Both Sa and Sg are false. (b) Both S and Sg are true. (c) Sa is true and Sg is false. (d) Sa is

false and Ss is true.

The Floyd-Warshall algorithm is a famous algorithm to solve the all-pairs shortest-paths
problem on a weighted directed graph G = (¥, E). The algorithm gives a recursive formula to
compute d®[i, 7], the length of a shortest path from i to j using only vertices with indices < k.
Here it 1s assumed that the vertex set V' = {1, 2, ..., n} if the given graph contains » vertices.
Now if the given graph has 5 vertices and the edges: (1,2,3), (1,3,8), (1,5,-4), (2,4,1), (2,5,7),
(3,2 4), (4,1,2), (4,3,-5), (5,4,6), where each triple (i, j, {) represents there is an edge directed

SRR BERA

li

D
Y

\
]
.

A

N
‘:ﬁ. ‘

P FRZ 107 2 FEAALHEERANLRA

El T EIE | AR B2ZR
#8 ¢ - Riua Y /?5%‘ .
ARERLRANES . *HESRE (F) RS |

from i to j with weight 7. Then, after the execution of the algonthm the value d¥[2, 3] = (a)
-4 b)-2 (c)-1 (@) 2 (e) 3..

5. Follow the previous question. The value d*[1,4]= (a)—4 (b)—2 (©)-1 ()2 (e)3.

6. Given two sequences ABACBACBBAA and BDABCBACBDA, what is the length of the LCS
(Longest Common Subsequence) of these two sequences? (21) 5 06 ()7 (d)8 (e)09.

7. Consider a variation of the towers of Hanoi problem. We no longer assume that all the disks are
initially on one peg. They may be arbitrarily distributed among the three pegs, say pegs A, B,
and C, as long as they are ordered in decreasing sizes on each peg. The purpose of the puzzle
remains to move all disks to one specified peg, under the same constraints as the original'
problem, with as few moves as possible. We use array d[] to store such a distribution. For
example, if d[1] = A, d[2] = C, d[3] = C, it means disc 1 (the disc of smallest size) is on beg A,
and discs 2 and 3 are on peg C. If peg C is the destination bpeg, then only 1 move is needed. If
peg A is the destination peg, then it needs 6 moves. Now, given d[1] = A, d[2]=C, d[3] = C, d[4]
=B, d[5] =B, d[6] = A, how many moves are needed to move all 6 disks to peg C. (a) 35 (b)
36 (¢)37 (d)38 (e)39.

Suppose that array A[1:n] maintains a binary tree. For a binary tree node stored in A[i], its two
children (if exist) are stored in A[2i] and A[2i+1], respectively. the program below aims to complete
the following two tasks

(1) adjust array A to establish a max heap, and

(2) apply heap sort on the max heap built in (1) in nondecreasing order.

void adjust (int A[], int root, int n)
{
int child, rootkey;
int temp;
temp = Afroot];
rootkey = Afroot];
child = 2* root;
while (child <=n) {
if ((child <=n) && (A[child] <A[child+1]))
- child ++; '

ERSE

iE Jf:f‘"t’rfz?é’ PR

BRI RE107T 25 ERALHEELRIANELRAE

(ma: #zsm {7 237

{#8: THemmREs
I ARERERGES | XFEERE (F)NAEL

if (rootkey > A[child]) .
break;
else {
(B1) 5
child *=2; }

(B2) ;

void heapsort (int A[], int n)
{ /* perform a heap sort on A[1:n] */

int 1, j;

int temp;

for (__ (B3) ; 1>0; 1++) /* adjust the binary tree to establish the max heap */
adjust (A, 1, n);

for (1=n-1; i>0; i--) { /* heap sort */

swap(A[1], A[i+1], temp); /* exchange A[i] and A[i+1] */
adjust(A, 1, 1); }
-} '

8. Blank (B1) in the program above should be (a) A[child] = A[root] (b) A[child/2] = A[root] (c)
A[child/2] = A[child] (d) A[root] = A[root*2] (e) A[root] = A[child]

9. Blank (B2) in the program above should be (a) A[child] = temp (b) A[root] = A[child] (c)
Alchild] = A[child/2] (d) A[child/2] = temp (e) A[root] = témp |

10. Blank (B3) in the program above should be (a) i=1 (b) i=0 (c) i=n/2 (d) i=n () i=n/2+1

- BEE &5 BEEH—)

Program quickSort below aim to apply quick sort to A[left: right] into non-decreasing order.

void quickSort (int A[], int left, int right) jéxf;_
. N - /
¢ =
int pivot, 1, j; .:k;f-
=
» x.,3b 7‘%-.5 > g J
T LR EA SRR]
‘_!

Sk A2 107 245 FA P L RA LKA

ﬁrer
|#ta

:kl—iﬁ . . /___E ﬁgﬂ:ﬁ
AR R R ok

| RAEREAHES | xS EE (F) MR

11.

12.

13.

14.

int temp;
if (left <right) {
i=left-1; j = right;
pivot = A[right];
do { o
do i++; while (A[i] < pivot);
do j--; while (A[j] > pivot);
If(__ (B4)) swap(A[i], A[j], temp), /* exchange A[i] and A[j] */
} while (___(B5)); '

swap (__(B6)),
quickSort(A, left, j-1);
quickSort(A, j+1, right); }

Blank (B4) in the algorithm above should be (a) i>right-1 (b) j<left+1 (c) i>j (d) i>=j (e) i<]
Blank (B5) in the algorithm above should be (a) i>right-1 (b) j<left;|-1 (c) i>) (@) 1>=j (e) i<j

Blank (B6) in the algorithm above should be (a) A[left], A[j], temp (b) A[i], A[right], temp (c)

~ Alright], Aj], temp (d) Alleft+1], A[right], temp (e) Afright-1], A[j], temp

A hash function maps a key into a bucket in the hash table. Which of the following statements is . -
false? (a) A Biased use of the hash table is not a desired property of hash functions. (b) A

division hash function with divisor D = 2", where r is an integer, may result in serious collision.
(c) Doubling hash table (i.e., rebuild the hash table by doubling the number of table buckets)

may result in key search suspended for unacceptable long periods while the rebuild is in

progress. (d) Dynamic hash reduces the table rebuild time by ensuring a small amount of rebuild
changes (¢) When chaining is used to resolve overflows, the search for a key involves

comparison with keys that have different hash values.

3P R 107 5 B AR A AN SR

FRRlC EII | %P R 5%
FHE T ERSEEEEE
AHEREANES X EEBEL (F) AL

LR 5 o BB/ NEER1 5 > JIFBL Kib)

15. Below is the Maximum Contiguous Subsequence Sum Dynamic Programming (MCSSDP)
algorithm returning the all-element sum of a non-empty contiguous subsequence S’ of a given -
sequence S such that the sum 1s maximum, where S={s1,...,5»}, #>0, is a sequence of positive or
negative integers. Choose all items that all together allow S’ to be an empty subsequencc, whose
sum is assumed to be 0.

(a) delete both line 1 and line 2

(b) replace line 3 with m € max(s1, 0)

(c) replace line 6 with m <max(m+s;, 0)
(d) replace line 7 with mcss <max(m-+s;, 0)

(e) replace line 7 with mcss €max(m, s;, 0)

Algorithm MCSSDP
Input: a non-empty sequence S={si,...,Sn}, n>0, where s; , 1<i<n, is a positive or negative
nufnber

Output: the maximum all-element sum of a non-empty contiguous subsequence of S

1. if all elements of S is negative then
2. return max(él,..., Sn)

3. m€<sy

4. mess&<m

5. for i<2 ton do

6 mé-inax(m+si, Si)

7. mess€<max(mess, m)
8

. return mcss

16. Choose the correct statement(s):

(a) If we can solve a prolem X with a polynomial time-complexity non-deterministic algorithm,

then X is an NP problem.

(b) If X is an NP-hard problem, then every NP problem can polynomially reduce to X.

(c) Let X be an NP-hard problem. If X can be solved by a deterministic algorithm with
polynomial time complexity in the worst case, then every NP probloem can be solved by a
deterministic algorithm with polynomial time complexity in the worst case.

. (d) Let X be an NP-hard problem. If a problem Y can polynomially reduce to X, then Y is

EEH B A

S ok 107 £ 25 AR - HE A S SR

Ama: Frm '» “XR 207

FB ¢ BEHEHmEEE
| AFEREAHLS - K HESEE (£) ML
NP-hard. _
(e) Let X be an NP-hard problem. If X can polynomially reduce to a problem Y, then Y is
NP-hard. |

17. Choose the correct statement(s):
. (a) If X 1s an NP-complete problem, then X is an NP problem.

(b) If X 1s an NP-complete problem, then X is NP-hard.

(c) Let X be an NP-complete problem. If X can polynomially reduce to a problem Y, then Y is
NP-complete.

(d) Let X be an NP-complete problem. If a problem Y can polynomially reduce to X, then Y is
NP-complete. ’

(e) Let X be an NP-complete problem. If X can polynomially reduce to a problem Y, then Y is
NP-hard. '

18. Below is the Bellman-Ford Shortest Path (BFSP) algorithm, whose input is a positively
weighted digraph, and whose output is the distance (or accumulated weight) of the shortest path
from the source node to every node. Choose all items that all together make the algorithm a
negative cycle detection algorithm, whose input is a weighted digraph G in which weights may
be negative or positive, and whose output is “ “yes” if graph G has cycles of negative weights;
otherwise, “no” ”

(a) replace “w[x] [y] 0” with “w[x]{y]>0 or w[x][y}<0” in the Input section
(b) replace the Output with “ “yes” if graph G has cycles of negative weights; otherwise, “no” ”
(c) replace line 2 with
2. for i<1to|V] do

(d) replace line 6 with the following lines:

6. if d[u]>0 for each u#s then

7. return “yes”

8. else ’ : . .

9. return “no” \

(e) replace line 6 with the following lines:

\,\x‘ﬂ
i

»\{4
1hA Y
.

=

N\
Y

6. for every edge (x, y) in E do
7. if d[y] > d[x] + w[x][y] then

8. return “yes”

9. return “no”

Algorithm BFSP
Input: a weighted digraph G=(V, E), where the weight of each edge (x, y) in E is represented by

IF R RS 107 S FBEEERALRA

| pr0
#8 ! ‘ ‘
AFEREATE S - R EERE (F) NS

19.

HIM | | %58 #/]R
ERERmREE ik |

wlx][y], w[x][¥]>0, and a source.node s, s€V .

Output: the distance of the shortest path from the source node to every node -
1. d[s]<0; d[u]<oo for each u#s

2. fori<1to|V]-1do

3 for every edge (x, y) in E do

4. if d[y]>d[x] +w[x][y] then

5 diyl« d[x] +wix][y] .

6

return d

Below is Subset Sum Dynamic Programming (SSDP) algorithm to solve the subset sum
problem, as described below. Given a set S of » positive integers, and a specific integer c,
determine if there exists a subset S’ of .S such that the sum of elements in S’ is ¢. Choose the
correct statement(s).

(a). The time complexity of the SSDP algorithm is O(n-c).

(b). The time complexity of the SSDP algorithm is O(n-c?).

(c). The SSDP algorithm is a pseudo-polynomial time-complexity algorithm.

(d). The subset sum problem is a P problem.

(e). The subset sum problem is an NP-complete problem.

Algorithm SSDP - :
Input: a set S={vi,...,v»} of n positive integers, and a positive integer ¢
Output: “yes” if there exists a subset S’ of S such that the sum of elements in S’ is ¢; otherwise,

[13 2

no
forw € 0tocdo
v[0, w]=0
fori € 1tondo
forw € 0to cdo
if vi<w then
Vi, w] € max(v[i-1, w], vi +v[i-1, w-v])
else
vl[i, wl € v[i-1, w]
if v[n, c]=c then
10: return “yes”
11: else
12: return “no”

N AR A e

Below is the algorithm AllPairCost which computes the shortest distances between all pairs of
vertices 1, j, where 1 # j. Formally, given distances of edges in graph G, determine the shortest

distances between all pairs of vertices in G. Note that the distance of an arbitrary edge in G is

EEHEEAA

B 3 P gtk 107 45 5 5 b3 4 A B

|ps: Zzsm | *ER #EA

|#8: EHSHEEEE

|AHEREAHEB xBAEKRE(F) %A

non-negative.

Algorithm AllPairCost -

Input: a two dimensional array C, where C[i][j]>0 denotes the distance of directed edge (i,)
(i.e., the edge from vertex i to vertex j) .

Output: a two dimensional array D, where D[i][j] denotes the shortest distance from vertex i to
vertex j.

1: inti,j, k;

2: for (1=0; i<n; i++)

3 for (j=0; j<n; j++)

4 D[i][j] = Clil];

5: for (k=0; k<n; k++)

6 for (i=0; i<n; j++)

7 for (j=0; j<n; j++)

8 if (B7H)

9 (B8) ;

20. Blank (B7) in the algorithm above should be (a) D[1][j] < D[i-1][k]+D[k][j-1] (b) D[i][j] <
D[i][k]+D[k][j] (c) D[i][3] < D[i](k+1]+D[k+1](j] (d) D[i]j] < DIi][k] +D[j1[k] (e) D[i][j] <
D[i-1][j-1]

21. Blank (B8) in the algorithm above should be (a) D[i][j] = D[i-1][k]+DI[k][j-1] (b) D[i}[j] =
D[i][k}+D[k](j] (¢) D[i][j] = D[i](k+1]+D{k+1](j] (d) D[i][5] = D[i][k] +D[jl[k] (e) D[i]{j] =
D[i-1](-1] - |

22. Which of the following statements is true? (a) For two non-adjacent vertices u and v, C[u][v]
should be 0 (b) Algorithm AllPairCost is applicable to graphs with cycles (c¢) Algorithm
AllPairCost is applicable to undirected graphs (d) Algorithm AllPairCost is applicable to graphs
‘with multiple edges (i.e., two or more edges are incident to the same two vertices) (e) All of the

above

2.

-

o
o
P g
i

