台灣聯合大學系統 106 學年度學士班轉學生考試試題

 	一一一一门一八子小心100子一尺子工址将子生考試	武、政
科目	普通物理 類組別 A3 A5 A7	共_/ 頁 第 /
10.00	E答案卷內作答	ハ <u>ノ</u> ス ヤ <u>ノ</u>
· // /C	題,共6題。請將答案依題號順序寫在答案卷上,不必寫	演算過程。
1.	A ladder of length L and weight W rests on a rough floor and against a	frictionless wall, as
	shown in figure 1. The maximum angle $ heta$ between ladder and wall is	45°. (a) Find the
	minimum coefficient of static friction at the floor. (b) the force exerted	by the wall at this
	angle θ = 45°. (a)10% (b) 5%	
2.	A uniform rod of length L and mass M is pivoted freely at one third of	the rod as shown
	in figure 2. (a) What is the angular acceleration of the rod when it is	s at angle θ to the
	vertical. (b) What is the tangential linear acceleration of the end A of	the rod when the
	rod is horizontal? The moment of inertia of a rod about one end is ML2	² /3.
	(a)10% (b)5%	
3.	What is the heat input needed to raise the temperature of 2 moles of	di-atomic gas, like
	hydrogen, from 0°C to 100°C (a) at constant volume; (b) at constant pressure? (c) What	
	the work done by the gas in part (b)?	
	(a)5%(b) 5%(c) 5%	
4.	A radio station transmits a 100-kW signal at a frequency of 150 MI	
	assume that it radiates as a point source. At a distance of 10 km from the antenna, find:	
	(a) the amplitudes of the electric and magnetic field strengths, and (b) the energy incident	
	normally on a square plate of side 10 cm in 5 min.	
Ē	(a) 10% (b)10%	
5.(6	What is the de Broglie wavelength of an electron accelerated from re	
	difference of 150 V? (b) The 150 eV electron beam are directed at a sp	pacing $D = 0.2 \text{ nm}$
	crystal. Find the angular position of the first diffraction maxima angle	θ.
6.	(a)7% (b) 8%	
ų.	The wave function of a particle of mass m in a 1-D box in x-direction , or	ne end at $x = 0$
•	and the other end at L, is ψ (x) = Asin($n\pi x/L$). Where n is integer and L	
	Find the ground state energy in eV by using de Broglie's hypothesis. (b)	If the particle in
	the 2^{nd} excited state. What is the possibility to find the particle in region = 0 and $x = 1/3$. (a)10%	on in between x
	= 0 and x = L/3. (a)10% (b)10%	
	Gravitational acceleration $g = 9.8 \text{ m/s}^2$ Gas constant $R = 8.3 \text{ J/K.mole}$ Electron mass $m_e = 9.1*10^{-31}\text{kg}$ Boltzmann's constant $k = 1.38*10^{-23} \text{ J/K}$	4
	Electron charge $e = 1.6*10^{-19} C$ Planck's constant $h = 6.6*10^{-34} J^*s$ Permeability constant $\mu_0 = 4\pi*10^{-7} H/m$	13
	Permittivity constant $\epsilon_0 = 4.0^{\circ} \text{H/m}$	12
		ti
	End A	
	9	
	1/37/21/3	13

Figure 1

Figure 2

... pivot