參考文獻 |
1. Siegel, R.L., K.D. Miller and A. Jemal, Cancer statistics, 2017. CA: A Cancer Journal for Clinicians, 2017. 67(1): p. 7-30.
2. 衛生福利部國民健康署, 105年死因統計結果分析報告. 2016: p. 6-7.
3. Cortazar, P., L. Zhang, M. Untch, K. Mehta, J. Costantino, N. Wolmark, H. Bonnefoi, D. Cameron, L. Gianni, P. Valagussa, J.A. Zujewski, R. Justice, S. Loibl, L. Wickerham, J. Bogaerts, J. Baselga, C. Perou, G. Blumenthal, J. Blohmer, E. Mamounas, J. Bergh, V. Semiglazov, T. Prowell, H. Eidtmann, S. Paik, M. Piccart, R. Sridhara, P. Fasching, S.M. Swain, L. Slaets, S. Tang, B. Gerber, C. Geyer, R. Pazdur, N. Ditsch, P. Rastogi, W. Eiermann and G. von Mincwitz, Abstract P1-14-20: Meta-analysis Results from the Collaborative Trials in Neoadjuvant Breast Cancer (CTNeoBC). Cancer Research, 2012. 72(24 Supplement): p. P1-14-20-P1-14-20.
4. Dolmans, D.E.J.G.J., D. Fukumura and R.K. Jain, Photodynamic therapy for cancer. Nat Rev Cancer, 2003. 3(5): p. 380-387.
5. Allison, R.R. and K. Moghissi, Photodynamic Therapy (PDT): PDT Mechanisms. Clinical Endoscopy, 2013. 46(1): p. 24-29.
6. Tong, L., Y. Zhao, T.B. Huff, M.N. Hansen, A. Wei and J.-X. Cheng, Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity. Advanced materials (Deerfield Beach, Fla.), 2007. 19: p. 3136-3141.
7. Hildebrandt, B., P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix and H. Riess, The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology / Hematology. 43(1): p. 33-56.
8. Huff, T.B., L. Tong, Y. Zhao, M.N. Hansen, J.-X. Cheng and A. Wei, Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine (London, England), 2007. 2(1): p. 125-132.
9. Jang, B., J.-Y. Park, C.-H. Tung, I.-H. Kim and Y. Choi, Gold Nanorod−Photosensitizer Complex for Near-Infrared Fluorescence Imaging and Photodynamic/Photothermal Therapy In Vivo. ACS Nano, 2011. 5(2): p. 1086-1094.
10. Matylevitch, N.P., S.T. Schuschereba, J.R. Mata, G.R. Gilligan, D.F. Lawlor, C.W. Goodwin and P.D. Bowman, Apoptosis and Accidental Cell Death in Cultured Human Keratinocytes after Thermal Injury. The American Journal of Pathology, 1998. 153(2): p. 567-577.
11. He, X., X. Bao, H. Cao, Z. Zhang, Q. Yin, W. Gu, L. Chen, H. Yu and Y. Li, Tumor-Penetrating Nanotherapeutics Loading a Near-Infrared Probe Inhibit Growth and Metastasis of Breast Cancer. Advanced Functional Materials, 2015. 25(19): p. 2831-2839.
12. Rui, L.-L., H.-L. Cao, Y.-D. Xue, L.-C. Liu, L. Xu, Y. Gao and W.-A. Zhang, Functional organic nanoparticles for photodynamic therapy. Chinese Chemical Letters, 2016. 27(8): p. 1412-1420.
13. Liang, C., S. Diao, C. Wang, H. Gong, T. Liu, G. Hong, X. Shi, H. Dai and Z. Liu, Tumor Metastasis Inhibition by Imaging-Guided Photothermal Therapy with Single-Walled Carbon Nanotubes. Advanced Materials, 2014. 26(32): p. 5646-5652.
14. Elsherbini, A.A.M., M. Saber, M. Aggag, A. El-Shahawy and H.A.A. Shokier, Laser and radiofrequency-induced hyperthermia treatment via gold-coated magnetic nanocomposites. International Journal of Nanomedicine, 2011. 6: p. 2155-2165.
15. Cai, X., X. Jia, W. Gao, K. Zhang, M. Ma, S. Wang, Y. Zheng, J. Shi and H. Chen, A Versatile Nanotheranostic Agent for Efficient Dual-Mode Imaging Guided Synergistic Chemo-Thermal Tumor Therapy. Advanced Functional Materials, 2015. 25(17): p. 2520-2529.
16. Su, S., Y. Ding, Y. Li, Y. Wu and G. Nie, Integration of photothermal therapy and synergistic chemotherapy by a porphyrin self-assembled micelle confers chemosensitivity in triple-negative breast cancer. Biomaterials, 2016. 80: p. 169-178.
17. Allison, R.R., G.H. Downie, R. Cuenca, X.-H. Hu, C.J.H. Childs and C.H. Sibata, Photosensitizers in clinical PDT. Photodiagnosis and Photodynamic Therapy. 1(1): p. 27-42.
18. Kujundžić, M., T.J. Vogl, D. Stimac, N. Rustemović, R.A. Hsi, M. Roh, M. Katičić, R. Cuenca, R.A. Lustig and S. Wang, A Phase II safety and effect on time to tumor progression study of intratumoral light infusion technology using talaporfin sodium in patients with metastatic colorectal cancer. Journal of Surgical Oncology, 2007. 96(6): p. 518-524.
19. Sitnik, T.M., J.A. Hampton and B.W. Henderson, Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate. British Journal of Cancer, 1998. 77(9): p. 1386-1394.
20. Wang, W., L.T. Moriyama and V.S. Bagnato, Photodynamic therapy induced vascular damage: an overview of experimental PDT. Laser Physics Letters, 2013. 10(2): p. 023001.
21. Wang, K., Y. Zhang, J. Wang, A. Yuan, M. Sun, J. Wu and Y. Hu, Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Scientific Reports, 2016. 6: p. 27421.
22. Cobleigh, M.A., C.L. Vogel, D. Tripathy, N.J. Robert, S. Scholl, L. Fehrenbacher, J.M. Wolter, V. Paton, S. Shak, G. Lieberman and D.J. Slamon, Multinational Study of the Efficacy and Safety of Humanized Anti-HER2 Monoclonal Antibody in Women Who Have HER2-Overexpressing Metastatic Breast Cancer That Has Progressed After Chemotherapy for Metastatic Disease. Journal of Clinical Oncology, 1999. 17(9): p. 2639-2639.
23. Slamon , D.J., B. Leyland-Jones , S. Shak , H. Fuchs , V. Paton , A. Bajamonde , T. Fleming , W. Eiermann , J. Wolter , M. Pegram , J. Baselga and L. Norton Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. New England Journal of Medicine, 2001. 344(11): p. 783-792.
24. Marty, M., F. Cognetti, D. Maraninchi, R. Snyder, L. Mauriac, M. Tubiana-Hulin, S. Chan, D. Grimes, A. Antón, A. Lluch, J. Kennedy, K. O’Byrne, P. Conte, M. Green, C. Ward, K. Mayne and J.-M. Extra, Randomized Phase II Trial of the Efficacy and Safety of Trastuzumab Combined With Docetaxel in Patients With Human Epidermal Growth Factor Receptor 2–Positive Metastatic Breast Cancer Administered As First-Line Treatment: The M77001 Study Group. Journal of Clinical Oncology, 2005. 23(19): p. 4265-4274.
25. Chasteen, D.T.G., Relaxation mechanism for excited state molecules. 2013.
26. Smith, A.M., M.C. Mancini and S. Nie, Second window for in vivo imaging. Nature nanotechnology, 2009. 4(11): p. 710-711.
27. Tromberg, B.J., A.E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, A.J. Berger, J. Butler and R.F. Holcombe. Functional diffuse optical spectroscopy of human breast tissue. in LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Cat. No.01CH37242). 2001.
28. Lane, P.M., T. Gilhuly, P.D. Whitehead, H. Zeng, C. Poh, S. Ng, M. Williams, L. Zhang, M. Rosin and C.E. MacAulay. Simple device for the direct visualization of oral-cavity tissue fluorescence. 2006. SPIE.
29. Poh, C.F., S.P. Ng, P.M. Williams, L. Zhang, D.M. Laronde, P. Lane, C. MacAulay and M.P. Rosin, Direct fluorescence visualization of clinically occult high-risk oral premalignant disease using a simple hand-held device. Head & Neck, 2007. 29(1): p. 71-76.
30. Roblyer, D., R. Richards-Kortum, K. Sokolov, A.K. El-Naggar, M.D. Williams, C. Kurachi and A.M. Gillenwater, Multispectral optical imaging device for in vivo detection of oral neoplasia. Journal of biomedical optics, 2008. 13(2): p. 024019-024019.
31. Hellebust, A. and R. Richards-Kortum, Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomedicine (London, England), 2012. 7(3): p. 429-445.
32. Hoetker MS, F.S., Galle PR, Ralf K, Goetz M, Molecular in vivo imaging of gastrointestinal neoplasia with endomicroscopy using therapeutic antibodies against EGFR. 2011. May 7–10.
33. Reubi, J.C. and H.R. Maecke, Peptide-Based Probes for Cancer Imaging. Journal of Nuclear Medicine, 2008. 49(11): p. 1735-1738.
34. Nitin, N., K.J. Rosbach, A. El-Naggar, M. Williams, A. Gillenwater and R.R. Richards-Kortum, Optical Molecular Imaging of Epidermal Growth Factor Receptor Expression to Improve Detection of Oral Neoplasia. Neoplasia (New York, N.Y.), 2009. 11(6): p. 542-551.
35. Ke, S., X. Wen, M. Gurfinkel, C. Charnsangavej, S. Wallace, E.M. Sevick-Muraca and C. Li, Near-Infrared Optical Imaging of Epidermal Growth Factor Receptor in Breast Cancer Xenografts. Cancer Research, 2003. 63(22): p. 7870-7875.
36. Shaner, N.C., P.A. Steinbach and R.Y. Tsien, A guide to choosing fluorescent proteins. Nature Methods, 2005. 2: p. 905.
37. Patterson, G.H., S.M. Knobel, W.D. Sharif, S.R. Kain and D.W. Piston, Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophysical Journal, 1997. 73(5): p. 2782-2790.
38. Yguerabide, J. and E.E. Yguerabide, Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications: I. Theory. Analytical Biochemistry, 1998. 262(2): p. 137-156.
39. Horisberger, M., J. Rosset and H. Bauer, Colloidal gold granules as markers for cell surface receptors in the scanning electron microscope. Experientia, 1975. 31(10): p. 1147-1149.
40. Adler, D.C., S.-W. Huang, R. Huber and J.G. Fujimoto, Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Optics Express, 2008. 16(7): p. 4376-4393.
41. Hirsch, L.R., R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas and J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(23): p. 13549-13554.
42. Loo, C., A. Lowery, N. Halas, J. West and R. Drezek, Immunotargeted Nanoshells for Integrated Cancer Imaging and Therapy. Nano Letters, 2005. 5(4): p. 709-711.
43. Huang, X., I.H. El-Sayed, W. Qian and M.A. El-Sayed, Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. Journal of the American Chemical Society, 2006. 128(6): p. 2115-2120.
44. Skrabalak, S.E., J. Chen, L. Au, X. Lu, X. Li and Y. Xia, Gold Nanocages for Biomedical Applications. Advanced materials (Deerfield Beach, Fla.), 2007. 19(20): p. 3177-3184.
45. Javier, D.J., N. Nitin, D.M. Roblyer and R. Richards-Kortum, Metal-based nanorods as molecule-specific contrast agents for reflectance imaging in 3D tissues. Journal of nanophotonics, 2008. 2(1): p. 023506.
46. Miwa, M., The Principle of ICG Fluorescence Method. Vol. 2. 2010.
47. Desmettre, T., J.M. Devoisselle and S. Mordon, Fluorescence Properties and Metabolic Features of Indocyanine Green (ICG) as Related to Angiography. Survey of Ophthalmology. 45(1): p. 15-27.
48. Yoneya, S. and K. Noyori, Improved visualization of the choroidal circulation with indocyanine green angiography. Archives of Ophthalmology, 1993. 111(9): p. 1165-1166.
49. Mordon, S., J.M. Devoisselle, S. Soulie-Begu and T. Desmettre, Indocyanine Green: Physicochemical Factors Affecting Its Fluorescencein Vivo. Microvascular Research, 1998. 55(2): p. 146-152.
50. Cardiogreen. at Sigma-Aldrich.
51. Landsman, M.L., G. Kwant, G.A. Mook and W.G. Zijlstra, Light-absorbing properties, stability, and spectral stabilization of indocyanine green. Journal of Applied Physiology, 1976. 40(4): p. 575.
52. Cherrick, G.R., S.W. Stein, C.M. Leevy and C.S. Davidson, INDOCYANINE GREEN: OBSERVATIONS ON ITS PHYSICAL PROPERTIES, PLASMA DECAY, AND HEPATIC EXTRACTION. Journal of Clinical Investigation, 1960. 39(4): p. 592-600.
53. van den Biesen, P.R., F.H. Jongsma, G.J. Tangelder and D.W. Slaaf, Yield of fluorescence from indocyanine green in plasma and flowing blood. Annals of Biomedical Engineering, 1995. 23(4): p. 475-481.
54. Baker, K.J., Binding of Sulfobromophthalein (BSP) Sodium and Indocyanine Green (ICG) by Plasma α1 Lipoproteins. Proceedings of the Society for Experimental Biology and Medicine, 1966. 122(4): p. 957-963.
55. Hsiang, Y.-H., M.G. Lihou and L.F. Liu, Arrest of Replication Forks by Drug-stabilized Topoisomerase I-DNA Cleavable Complexes as a Mechanism of Cell Killing by Camptothecin. Cancer Research, 1989. 49(18): p. 5077-5082.
56. 楊士平 and 李慶國, The Historical Review of Camptothecin and Its Derivatives 2009.03: p. 45-60.
57. Del Bino, G., P. Lassota and Z. Darzynkiewicz, The S-phase cytotoxicity of camptothecin. Experimental Cell Research, 1991. 193(1): p. 27-35.
58. Nicholas, A.W., M.C. Wani, G. Manikumar, M.E. Wall, K.W. Kohn and Y. Pommier, Plant antitumor agents. 29. Synthesis and biological activity of ring D and ring E modified analogs of camptothecin. Journal of Medicinal Chemistry, 1990. 33(3): p. 972-978.
59. Svenson, S., M. Wolfgang, J. Hwang, J. Ryan and S. Eliasof, Preclinical to clinical development of the novel camptothecin nanopharmaceutical CRLX101. Journal of Controlled Release, 2011. 153(1): p. 49-55.
60. Riess, J.G., Perfluorocarbon-based Oxygen Delivery. Artificial Cells, Blood Substitutes, and Biotechnology, 2006. 34(6): p. 567-580.
61. Ahrens, E.T., R. Flores, H. Xu and P.A. Morel, In vivo imaging platform for tracking immunotherapeutic cells. Nature Biotechnology, 2005. 23: p. 983.
62. Zhou, Z.-x., B.-g. Zhang, H. Zhang, X.-z. Huang, Y.-l. Hu, L. Sun, X.-m. Wang and J.-w. Zhang, Drug packaging and delivery using perfluorocarbon nanoparticles for targeted inhibition of vascular smooth muscle cells. Acta Pharmacologica Sinica, 2009. 30(11): p. 1577-1584.
63. Ren, H., J. Liu, Y. Li, H. Wang, S. Ge, A. Yuan, Y. Hu and J. Wu, Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy. Acta Biomaterialia, 2017. 59(Supplement C): p. 269-282.
64. Bae, P.K., J. Jung and B.H. Chung, Highly enhanced optical properties of indocyanine green/perfluorocarbon nanoemulsions for efficient lymph node mapping using near-infrared and magnetic resonance imaging. Nano Convergence, 2014. 1(1): p. 6.
65. Bruley, W.E.D.F., Oxygen Transport to Tissue XIV. 1992.
66. 邱建忠, 近紅外光頻域式量測系統於固態乳房仿體之量測與分析研究. 2011, 國立中央大學生物醫學工程研究所.
67. CZ, S., L. CT, Z. YZ, G. P, T. JL and e. al, Characterization of the Doxorubicin-Pluronic F68 Conjugate Micelles and Their Effect on Doxorubicin Resistant Human Erythroleukemic Cancer Cells, in J Nanomedic Nanotechnol. 2011. p. 1-6.
68. Barua, S., J.-W. Yoo, P. Kolhar, A. Wakankar, Y.R. Gokarn and S. Mitragotri, Particle shape enhances specificity of antibody-displaying nanoparticles. Proceedings of the National Academy of Sciences, 2013. 110(9): p. 3270-3275.
69. Zheng, M., C. Yue, Y. Ma, P. Gong, P. Zhao, C. Zheng, Z. Sheng, P. Zhang, Z. Wang and L. Cai, Single-Step Assembly of DOX/ICG Loaded Lipid–Polymer Nanoparticles for Highly Effective Chemo-photothermal Combination Therapy. ACS Nano, 2013. 7(3): p. 2056-2067.
|