博碩士論文 104827009 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.16.217.146
姓名 郭柏緯(Po-Wei Kuo)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 包覆靛氰綠與喜樹鹼之標靶全氟碳奈米乳劑 研製於強化乳癌螢光擴散光學影像暨 光/化學治療之研究
(Fabrication of HER2 Target Indocyanine Green-Camptothecin-Loaded Perfluorocarbon Nanodroplets for Photochemotherapy and Fluorescence Diffuse Optical Tomography of Breast Cancer)
相關論文
★ 研究探討層流剪應力於高糖環境下對膀胱癌細胞遷移與侵襲行為之影響★ 研究探討層流剪應力對泌尿上皮細胞癌於細胞週期運作之影響與機轉
★ 設計並建構一全氟碳光生物反應器組用於分離混合氣體中之二氧化碳並同時提升微藻養殖及其經濟產物生成之效能★ Synthesis, Spectral Characterization and Evaluation of Quercetin-Zinc Complex for Tumoricidal and Anti-metastasis of Human Bladder Cancer Cell
★ 研製包覆靛氰綠與絲裂黴素C之標靶全氟碳奈米乳劑應用於膀胱癌光-化學治療之研究★ 研製包覆靛氰綠及利福平之聚乳酸-聚甘醇酸奈米粒子用於破壞生物膜之抗菌治療
★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane
★ 開發可生物降解的完全磷酸膽鹼水凝膠★ Development of Functional Biointerface by Mixed Oligomeric Silatranes
★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry
★ Disulfide-based cross-linkers for functional polymeric networks★ 建立雙離子高分子修飾蛋白質技術與分析
★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER★ 製備脂多醣-去唾液酸醣蛋白受體-聚乳酸共聚物標靶奈米粒子用於肝纖維化動物模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) HER2過度表達型乳腺癌由於其高發生率、抗藥性和預後差,長期以來一直是女性最致命的乳癌亞型之一。而初期診斷出乳腺癌後的立即治療能夠使病患的5年存活率顯著提高到> 90 %,表明除了有效的治療策略外,成功的早期診斷能有效改善HER2 +乳腺癌的存活率。在本研究中,我們以二次乳化法並進行表面修飾合成出包覆靛氰綠(Indocyanine Green;ICG)及喜樹鹼(Camptothecin;CPT)之標靶人類表皮生長因子2 (Human Epidermal Growth Factor Receptor 2 (HER-2))之全氟碳化物奈米乳劑(HER2 Target ICG-CPT-Encapsulated PFC Double-Nano-Emulsions;HICPDNEs)的全氟化碳雙層納米乳液,用於光化學治療和螢光擴散光學斷層掃描(FDOT)診斷之顯影劑。根據結果,HICPDNEs的粒徑大小和表面電位分別為292.2 ± 5.6 nm和-13.5 ± 3.1 mV。藥物CPT和ICG的包覆效率分別為40.31 ± 7.6 %和99.12 ± 0.33 %。在體外模擬人體溫度37 ℃下經過48小時之後,HICPDNEs的降解率與游離的ICG水溶液相比多延長了73 %,而CPT之藥物釋放率僅為4.29 %,顯示載體的良好穩定性。此外,HICPDNEs在808 nm近紅外光波段,強度為6 W/cm2的雷射照射5分鐘後的升溫效果,20 μM的HICPDNEs可以達到42 ℃對癌細胞造成損害。在單態氧生成量試驗中,相同濃度下的HICPDNEs均遠高於游離的ICG水溶液,顯示本藥物載體在光動力具有極佳潛力。在體外細胞試驗中,將HICPDNEs與接枝抗體前的載體(ICPDNEs)進行比較,利用與HER2+之乳癌細胞(MDA-MB-453)證實HICPDNEs對HER2過度表現型細胞具專一性;細胞毒性試驗中,HICPDNEs在與MDA-MB-453細胞共同培養16小時後洗掉以激發波長為808 nm,強度為6 W/cm2的雷射光源照射5分鐘後,經過24小時之細胞存活率,和單純以CPT作用的細胞組別相比,HICPDNEs的細胞毒殺效果在高濃度(> 40 μM)下皆有顯著效果。在FDOT影像診斷中,以乳房組織與腫瘤仿體模擬實際狀況之量測,可偵測到含ICG之腫瘤仿體內之螢光且穿透深度達到45 mm,且根據本研究定義之「腫瘤切除品質指標」評估影像之結果,1 μM的HICPDNEs的值為24.89,具有作為後續臨床上診斷之潛力。本研究證實HICPDNEs具有良好的潛力成為乳腺癌治療和早期診斷的藥物載體,然而更多的研究需要在未來進一步驗證並持續的優化。
摘要(英) HER2-expressing breast cancer has long been recognized as one of the most lethal gynecological disease for women due to high incidence, its drug resistance and poor prognosis. On the other hand, treatment of breast cancer in its early stage may dramatically enhance the 5-year survival rate to > 90 %, indicating that in addition to development of an effective therapeutic strategy, successful early detection plays a crucial role in the improvement of survival rate of HER2+ breast cancer. In this study, a type of theranostic agent named human epidermal growth factor receptor 2 (HER2)-target Indocyanine green (ICG)-Camptothecin (CPT)-loaded perfluorocarbon double-nanoemulsions (HICPDNEs) was developed for use in photochemotherapy and fluorescence diffuse optical tomography (FDOT) diagnostics. According to our result, the size and zeta potential of HICPDNEs is 292.2 ± 5.6 nm and -13.5 ± 3.1 mV, respectively. The encapsulation efficiency for CPT and ICG is 40.31 ± 7.6 % and 99.12 ± 0.33 %, respectively. Under incubated at 37 ℃ for 48 hr, The degradation of HICPDNEs almost prolong 73 % compared with Free ICG, and only 4.29 % drug release. Hyperthermia effect of HICPDNEs under 808 nm laser exposure with intensity of 6 W/cm2 for 5 min, 20 μM of HICPDNEs can achieve 42 ℃. To generation of singlet oxygen, HICPDNEs are higher than the free ICG enormously at the same concentration, showed the potential of the phototherapy. Compare to the ICPDNEs, HICPDNEs are more effective to combine the HER2+ breast cancer cell (MDA-MB-453) due to its target mechanism, indicated HICPDNEs has specification on HER2 positive cancer cell. In cytotoxicity, HICPDNEs incubated with cell for 16 hr and expose the 808 nm laser (6 W/cm2) for 5 min. its cell viability indicated good effective than the free CPT in high concentration (> 40 μM). In diagnosis, Tumor-like inclusions containing HICPDNEs in breast phantoms could be detected up to a depth of 4.5 cm using a FDOT system, according to 「Tumor resection quality index」, the best value is 24.89 in 1μM of HICPDNEs. Above of all, HICPDNEs has a good potential to be a theranostic agent for treatment and early diagnosis in breast cancer. More studies that we need to further validate in the future.
關鍵字(中) ★ 全氟碳化合物
★ 靛氰綠
★ 喜樹鹼
★ 乳癌
★ 雙層乳劑
★ 螢光擴散光學斷層掃描
關鍵字(英)
論文目次 目錄
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 4
第二章 文獻探討 5
2-1 乳癌 5
2-1-1 乳癌分期與分類 5
2-1-2 診斷方法 8
2-1-3 治療方法 11
2-1-4 光療 12
2-1-5 標靶治療 15
2-2 螢光擴散光學斷層掃描 18
2-2-1 光學特性 18
2-2-2 乳房與腫瘤組織光學特性 19
2-2-3 擴散光學量測技術 21
2-2-4 螢光擴散光學斷層掃描檢測技術 23
2-2-5 螢光標靶顯影劑 23
2-3 靛氰綠 26
2-4 喜樹鹼 29
2-5 全氟碳化物 31
第三章 實驗材料與方法 34
3-1 實驗藥品及儀器 34
3-1-1 藥品 34
3-1-2 儀器 35
3-2 實驗流程 37
3-3 全氟碳標靶奈米雙層乳劑之製備 38
3-3-1 Pluronic F68 羧酸化改質 38
3-3-2 製備包覆 ICG/CPT 奈米雙層乳劑 39
3-3-3 表面接枝人類表皮生長因子受體 2 單株抗體 40
3-4 HICPDNEs 物理特性分析 41
3-4-1 粒徑分析 41
3-4-2 表面電位分析 41
3-4-3 HICPDNEs 表面接枝抗體之測定 41
3-4-4 包覆率分析 41
3-4-5 包藥率分析 42
3-4-6 掃描式電子顯微鏡(SEM)分析 42
3-4-7 熱穩定性分析 42
3-5 HICPDNEs 於光治療功能之試驗 43
3-5-1 HICPDNEs 之升溫之效能 43
3-5-2 HICPDNEs 生成單態氧之效能 43
3-6 細胞體外實驗 43
3-6-1 細胞培養 43
3-6-2 HICPDNEs 對 HER2 過度表現乳癌細胞的專一性試驗 44
3-6-3 HICPDNEs 體外細胞毒性試驗 44
3-7 HICPNDEs 於 FDOT 系統之顯影功能試驗 46
3-7-1 液態仿體之製作 46
3-7-2 HICPDNEs 與純 ICG 水溶液最佳螢光強度之濃度測定 47
3-7-3 HICPDNEs 及 ICG 水溶液於乳房組織仿體之 FDOT 影像效果48
3-7-4 FDOT 影像重建之影像面積量化分析 51
3-8 統計分析 52
第四章 實驗結果與討論 54
4-1 修飾 Pluronic F68 尾端羧基化的分析 54
4-2 HICPDNEs 的物性化性分析 55
4-2-1 HICPDNEs 粒徑及表面電位分析 55
4-2-2 HICPDNEs 之表面形態分析 56
4-2-3 HICPDNEs 於表面接枝抗體分析 57
4-2-4 HICPDNEs 內 CPT 與 ICG 的包覆、包藥率分析 59
4-2-5 HICPDNEs 熱穩定性分析 59
4-3 HICPDNEs 於光治療功能之試驗分析 62
4-3-1 HICPDNEs 之升溫效果分析 62
4-3-2 HICPDNEs 生成單態氧之效能分析 64
4-4 HICPDNEs 體外細胞實驗之分析 65
4-4-1 HICPDNEs 對 HER2 過度表現乳癌細胞的專一性試驗分析 65
4-4-2 HICPDNEs 體外細胞毒性試驗 67
4-5 HICPDNEs 於 FDOT 系統之顯影功能試驗分析 70
4-5-1 HICPDNEs 與 ICG 水溶液最佳螢光強度之濃度測定分析 70
4-5-2 HICPDNEs 與 ICG 水溶液於乳房組織仿體之 FDOT 影像分析71
第五章 結論與未來展望 84
參考文獻 86
附錄一 藥物濃度與吸收值之檢量線 93
附錄二 FDOT 與 DOT 之影像重建 94
參考文獻 1. Siegel, R.L., K.D. Miller and A. Jemal, Cancer statistics, 2017. CA: A Cancer Journal for Clinicians, 2017. 67(1): p. 7-30.
2. 衛生福利部國民健康署, 105年死因統計結果分析報告. 2016: p. 6-7.
3. Cortazar, P., L. Zhang, M. Untch, K. Mehta, J. Costantino, N. Wolmark, H. Bonnefoi, D. Cameron, L. Gianni, P. Valagussa, J.A. Zujewski, R. Justice, S. Loibl, L. Wickerham, J. Bogaerts, J. Baselga, C. Perou, G. Blumenthal, J. Blohmer, E. Mamounas, J. Bergh, V. Semiglazov, T. Prowell, H. Eidtmann, S. Paik, M. Piccart, R. Sridhara, P. Fasching, S.M. Swain, L. Slaets, S. Tang, B. Gerber, C. Geyer, R. Pazdur, N. Ditsch, P. Rastogi, W. Eiermann and G. von Mincwitz, Abstract P1-14-20: Meta-analysis Results from the Collaborative Trials in Neoadjuvant Breast Cancer (CTNeoBC). Cancer Research, 2012. 72(24 Supplement): p. P1-14-20-P1-14-20.
4. Dolmans, D.E.J.G.J., D. Fukumura and R.K. Jain, Photodynamic therapy for cancer. Nat Rev Cancer, 2003. 3(5): p. 380-387.
5. Allison, R.R. and K. Moghissi, Photodynamic Therapy (PDT): PDT Mechanisms. Clinical Endoscopy, 2013. 46(1): p. 24-29.
6. Tong, L., Y. Zhao, T.B. Huff, M.N. Hansen, A. Wei and J.-X. Cheng, Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity. Advanced materials (Deerfield Beach, Fla.), 2007. 19: p. 3136-3141.
7. Hildebrandt, B., P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix and H. Riess, The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology / Hematology. 43(1): p. 33-56.
8. Huff, T.B., L. Tong, Y. Zhao, M.N. Hansen, J.-X. Cheng and A. Wei, Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine (London, England), 2007. 2(1): p. 125-132.
9. Jang, B., J.-Y. Park, C.-H. Tung, I.-H. Kim and Y. Choi, Gold Nanorod−Photosensitizer Complex for Near-Infrared Fluorescence Imaging and Photodynamic/Photothermal Therapy In Vivo. ACS Nano, 2011. 5(2): p. 1086-1094.
10. Matylevitch, N.P., S.T. Schuschereba, J.R. Mata, G.R. Gilligan, D.F. Lawlor, C.W. Goodwin and P.D. Bowman, Apoptosis and Accidental Cell Death in Cultured Human Keratinocytes after Thermal Injury. The American Journal of Pathology, 1998. 153(2): p. 567-577.
11. He, X., X. Bao, H. Cao, Z. Zhang, Q. Yin, W. Gu, L. Chen, H. Yu and Y. Li, Tumor-Penetrating Nanotherapeutics Loading a Near-Infrared Probe Inhibit Growth and Metastasis of Breast Cancer. Advanced Functional Materials, 2015. 25(19): p. 2831-2839.
12. Rui, L.-L., H.-L. Cao, Y.-D. Xue, L.-C. Liu, L. Xu, Y. Gao and W.-A. Zhang, Functional organic nanoparticles for photodynamic therapy. Chinese Chemical Letters, 2016. 27(8): p. 1412-1420.
13. Liang, C., S. Diao, C. Wang, H. Gong, T. Liu, G. Hong, X. Shi, H. Dai and Z. Liu, Tumor Metastasis Inhibition by Imaging-Guided Photothermal Therapy with Single-Walled Carbon Nanotubes. Advanced Materials, 2014. 26(32): p. 5646-5652.
14. Elsherbini, A.A.M., M. Saber, M. Aggag, A. El-Shahawy and H.A.A. Shokier, Laser and radiofrequency-induced hyperthermia treatment via gold-coated magnetic nanocomposites. International Journal of Nanomedicine, 2011. 6: p. 2155-2165.
15. Cai, X., X. Jia, W. Gao, K. Zhang, M. Ma, S. Wang, Y. Zheng, J. Shi and H. Chen, A Versatile Nanotheranostic Agent for Efficient Dual-Mode Imaging Guided Synergistic Chemo-Thermal Tumor Therapy. Advanced Functional Materials, 2015. 25(17): p. 2520-2529.
16. Su, S., Y. Ding, Y. Li, Y. Wu and G. Nie, Integration of photothermal therapy and synergistic chemotherapy by a porphyrin self-assembled micelle confers chemosensitivity in triple-negative breast cancer. Biomaterials, 2016. 80: p. 169-178.
17. Allison, R.R., G.H. Downie, R. Cuenca, X.-H. Hu, C.J.H. Childs and C.H. Sibata, Photosensitizers in clinical PDT. Photodiagnosis and Photodynamic Therapy. 1(1): p. 27-42.
18. Kujundžić, M., T.J. Vogl, D. Stimac, N. Rustemović, R.A. Hsi, M. Roh, M. Katičić, R. Cuenca, R.A. Lustig and S. Wang, A Phase II safety and effect on time to tumor progression study of intratumoral light infusion technology using talaporfin sodium in patients with metastatic colorectal cancer. Journal of Surgical Oncology, 2007. 96(6): p. 518-524.
19. Sitnik, T.M., J.A. Hampton and B.W. Henderson, Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate. British Journal of Cancer, 1998. 77(9): p. 1386-1394.
20. Wang, W., L.T. Moriyama and V.S. Bagnato, Photodynamic therapy induced vascular damage: an overview of experimental PDT. Laser Physics Letters, 2013. 10(2): p. 023001.
21. Wang, K., Y. Zhang, J. Wang, A. Yuan, M. Sun, J. Wu and Y. Hu, Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Scientific Reports, 2016. 6: p. 27421.
22. Cobleigh, M.A., C.L. Vogel, D. Tripathy, N.J. Robert, S. Scholl, L. Fehrenbacher, J.M. Wolter, V. Paton, S. Shak, G. Lieberman and D.J. Slamon, Multinational Study of the Efficacy and Safety of Humanized Anti-HER2 Monoclonal Antibody in Women Who Have HER2-Overexpressing Metastatic Breast Cancer That Has Progressed After Chemotherapy for Metastatic Disease. Journal of Clinical Oncology, 1999. 17(9): p. 2639-2639.
23. Slamon , D.J., B. Leyland-Jones , S. Shak , H. Fuchs , V. Paton , A. Bajamonde , T. Fleming , W. Eiermann , J. Wolter , M. Pegram , J. Baselga and L. Norton Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. New England Journal of Medicine, 2001. 344(11): p. 783-792.
24. Marty, M., F. Cognetti, D. Maraninchi, R. Snyder, L. Mauriac, M. Tubiana-Hulin, S. Chan, D. Grimes, A. Antón, A. Lluch, J. Kennedy, K. O’Byrne, P. Conte, M. Green, C. Ward, K. Mayne and J.-M. Extra, Randomized Phase II Trial of the Efficacy and Safety of Trastuzumab Combined With Docetaxel in Patients With Human Epidermal Growth Factor Receptor 2–Positive Metastatic Breast Cancer Administered As First-Line Treatment: The M77001 Study Group. Journal of Clinical Oncology, 2005. 23(19): p. 4265-4274.
25. Chasteen, D.T.G., Relaxation mechanism for excited state molecules. 2013.
26. Smith, A.M., M.C. Mancini and S. Nie, Second window for in vivo imaging. Nature nanotechnology, 2009. 4(11): p. 710-711.
27. Tromberg, B.J., A.E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, A.J. Berger, J. Butler and R.F. Holcombe. Functional diffuse optical spectroscopy of human breast tissue. in LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Cat. No.01CH37242). 2001.
28. Lane, P.M., T. Gilhuly, P.D. Whitehead, H. Zeng, C. Poh, S. Ng, M. Williams, L. Zhang, M. Rosin and C.E. MacAulay. Simple device for the direct visualization of oral-cavity tissue fluorescence. 2006. SPIE.
29. Poh, C.F., S.P. Ng, P.M. Williams, L. Zhang, D.M. Laronde, P. Lane, C. MacAulay and M.P. Rosin, Direct fluorescence visualization of clinically occult high-risk oral premalignant disease using a simple hand-held device. Head & Neck, 2007. 29(1): p. 71-76.
30. Roblyer, D., R. Richards-Kortum, K. Sokolov, A.K. El-Naggar, M.D. Williams, C. Kurachi and A.M. Gillenwater, Multispectral optical imaging device for in vivo detection of oral neoplasia. Journal of biomedical optics, 2008. 13(2): p. 024019-024019.
31. Hellebust, A. and R. Richards-Kortum, Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomedicine (London, England), 2012. 7(3): p. 429-445.
32. Hoetker MS, F.S., Galle PR, Ralf K, Goetz M, Molecular in vivo imaging of gastrointestinal neoplasia with endomicroscopy using therapeutic antibodies against EGFR. 2011. May 7–10.
33. Reubi, J.C. and H.R. Maecke, Peptide-Based Probes for Cancer Imaging. Journal of Nuclear Medicine, 2008. 49(11): p. 1735-1738.
34. Nitin, N., K.J. Rosbach, A. El-Naggar, M. Williams, A. Gillenwater and R.R. Richards-Kortum, Optical Molecular Imaging of Epidermal Growth Factor Receptor Expression to Improve Detection of Oral Neoplasia. Neoplasia (New York, N.Y.), 2009. 11(6): p. 542-551.
35. Ke, S., X. Wen, M. Gurfinkel, C. Charnsangavej, S. Wallace, E.M. Sevick-Muraca and C. Li, Near-Infrared Optical Imaging of Epidermal Growth Factor Receptor in Breast Cancer Xenografts. Cancer Research, 2003. 63(22): p. 7870-7875.
36. Shaner, N.C., P.A. Steinbach and R.Y. Tsien, A guide to choosing fluorescent proteins. Nature Methods, 2005. 2: p. 905.
37. Patterson, G.H., S.M. Knobel, W.D. Sharif, S.R. Kain and D.W. Piston, Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophysical Journal, 1997. 73(5): p. 2782-2790.
38. Yguerabide, J. and E.E. Yguerabide, Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications: I. Theory. Analytical Biochemistry, 1998. 262(2): p. 137-156.
39. Horisberger, M., J. Rosset and H. Bauer, Colloidal gold granules as markers for cell surface receptors in the scanning electron microscope. Experientia, 1975. 31(10): p. 1147-1149.
40. Adler, D.C., S.-W. Huang, R. Huber and J.G. Fujimoto, Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Optics Express, 2008. 16(7): p. 4376-4393.
41. Hirsch, L.R., R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas and J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(23): p. 13549-13554.
42. Loo, C., A. Lowery, N. Halas, J. West and R. Drezek, Immunotargeted Nanoshells for Integrated Cancer Imaging and Therapy. Nano Letters, 2005. 5(4): p. 709-711.
43. Huang, X., I.H. El-Sayed, W. Qian and M.A. El-Sayed, Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. Journal of the American Chemical Society, 2006. 128(6): p. 2115-2120.
44. Skrabalak, S.E., J. Chen, L. Au, X. Lu, X. Li and Y. Xia, Gold Nanocages for Biomedical Applications. Advanced materials (Deerfield Beach, Fla.), 2007. 19(20): p. 3177-3184.
45. Javier, D.J., N. Nitin, D.M. Roblyer and R. Richards-Kortum, Metal-based nanorods as molecule-specific contrast agents for reflectance imaging in 3D tissues. Journal of nanophotonics, 2008. 2(1): p. 023506.
46. Miwa, M., The Principle of ICG Fluorescence Method. Vol. 2. 2010.
47. Desmettre, T., J.M. Devoisselle and S. Mordon, Fluorescence Properties and Metabolic Features of Indocyanine Green (ICG) as Related to Angiography. Survey of Ophthalmology. 45(1): p. 15-27.
48. Yoneya, S. and K. Noyori, Improved visualization of the choroidal circulation with indocyanine green angiography. Archives of Ophthalmology, 1993. 111(9): p. 1165-1166.
49. Mordon, S., J.M. Devoisselle, S. Soulie-Begu and T. Desmettre, Indocyanine Green: Physicochemical Factors Affecting Its Fluorescencein Vivo. Microvascular Research, 1998. 55(2): p. 146-152.
50. Cardiogreen. at Sigma-Aldrich.
51. Landsman, M.L., G. Kwant, G.A. Mook and W.G. Zijlstra, Light-absorbing properties, stability, and spectral stabilization of indocyanine green. Journal of Applied Physiology, 1976. 40(4): p. 575.
52. Cherrick, G.R., S.W. Stein, C.M. Leevy and C.S. Davidson, INDOCYANINE GREEN: OBSERVATIONS ON ITS PHYSICAL PROPERTIES, PLASMA DECAY, AND HEPATIC EXTRACTION. Journal of Clinical Investigation, 1960. 39(4): p. 592-600.
53. van den Biesen, P.R., F.H. Jongsma, G.J. Tangelder and D.W. Slaaf, Yield of fluorescence from indocyanine green in plasma and flowing blood. Annals of Biomedical Engineering, 1995. 23(4): p. 475-481.
54. Baker, K.J., Binding of Sulfobromophthalein (BSP) Sodium and Indocyanine Green (ICG) by Plasma α1 Lipoproteins. Proceedings of the Society for Experimental Biology and Medicine, 1966. 122(4): p. 957-963.
55. Hsiang, Y.-H., M.G. Lihou and L.F. Liu, Arrest of Replication Forks by Drug-stabilized Topoisomerase I-DNA Cleavable Complexes as a Mechanism of Cell Killing by Camptothecin. Cancer Research, 1989. 49(18): p. 5077-5082.
56. 楊士平 and 李慶國, The Historical Review of Camptothecin and Its Derivatives 2009.03: p. 45-60.
57. Del Bino, G., P. Lassota and Z. Darzynkiewicz, The S-phase cytotoxicity of camptothecin. Experimental Cell Research, 1991. 193(1): p. 27-35.
58. Nicholas, A.W., M.C. Wani, G. Manikumar, M.E. Wall, K.W. Kohn and Y. Pommier, Plant antitumor agents. 29. Synthesis and biological activity of ring D and ring E modified analogs of camptothecin. Journal of Medicinal Chemistry, 1990. 33(3): p. 972-978.
59. Svenson, S., M. Wolfgang, J. Hwang, J. Ryan and S. Eliasof, Preclinical to clinical development of the novel camptothecin nanopharmaceutical CRLX101. Journal of Controlled Release, 2011. 153(1): p. 49-55.
60. Riess, J.G., Perfluorocarbon-based Oxygen Delivery. Artificial Cells, Blood Substitutes, and Biotechnology, 2006. 34(6): p. 567-580.
61. Ahrens, E.T., R. Flores, H. Xu and P.A. Morel, In vivo imaging platform for tracking immunotherapeutic cells. Nature Biotechnology, 2005. 23: p. 983.
62. Zhou, Z.-x., B.-g. Zhang, H. Zhang, X.-z. Huang, Y.-l. Hu, L. Sun, X.-m. Wang and J.-w. Zhang, Drug packaging and delivery using perfluorocarbon nanoparticles for targeted inhibition of vascular smooth muscle cells. Acta Pharmacologica Sinica, 2009. 30(11): p. 1577-1584.
63. Ren, H., J. Liu, Y. Li, H. Wang, S. Ge, A. Yuan, Y. Hu and J. Wu, Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy. Acta Biomaterialia, 2017. 59(Supplement C): p. 269-282.
64. Bae, P.K., J. Jung and B.H. Chung, Highly enhanced optical properties of indocyanine green/perfluorocarbon nanoemulsions for efficient lymph node mapping using near-infrared and magnetic resonance imaging. Nano Convergence, 2014. 1(1): p. 6.
65. Bruley, W.E.D.F., Oxygen Transport to Tissue XIV. 1992.
66. 邱建忠, 近紅外光頻域式量測系統於固態乳房仿體之量測與分析研究. 2011, 國立中央大學生物醫學工程研究所.
67. CZ, S., L. CT, Z. YZ, G. P, T. JL and e. al, Characterization of the Doxorubicin-Pluronic F68 Conjugate Micelles and Their Effect on Doxorubicin Resistant Human Erythroleukemic Cancer Cells, in J Nanomedic Nanotechnol. 2011. p. 1-6.
68. Barua, S., J.-W. Yoo, P. Kolhar, A. Wakankar, Y.R. Gokarn and S. Mitragotri, Particle shape enhances specificity of antibody-displaying nanoparticles. Proceedings of the National Academy of Sciences, 2013. 110(9): p. 3270-3275.
69. Zheng, M., C. Yue, Y. Ma, P. Gong, P. Zhao, C. Zheng, Z. Sheng, P. Zhang, Z. Wang and L. Cai, Single-Step Assembly of DOX/ICG Loaded Lipid–Polymer Nanoparticles for Highly Effective Chemo-photothermal Combination Therapy. ACS Nano, 2013. 7(3): p. 2056-2067.
指導教授 李宇翔(Yu-Hsiang Lee) 審核日期 2018-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明