博碩士論文 105426027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.149.252.238
姓名 徐佳玉(Chia-Yu,Hsu)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 光電埤塘提供民生用電之最佳規劃
(Optimal Planning of Floating Photovoltaic Systems on the Pond for Household Electricity Demand)
相關論文
★ 考量時間電價之家用電器排程規劃
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 人類依賴化石能源將會排放大量的溫室氣體,導致全球暖化逐年加劇,因此各國紛紛開始尋找替代能源,而再生能源就是很好的選擇。由於再生能源取自於自然資源,不會被耗盡,生產能源的過程也不會排放溫室氣體。但是若想利用再生能源替代化石能源,首先,需要克服再生能源的間歇性,所以有效的再生能源規劃對地球永續發展至關重要。
隨著科技發展,電器普及化,導致用電量連年增加,加上化石燃料逐年減少,缺電問題將愈來愈嚴重,如此將對人類生活帶來不便。為了解決缺電問題,及緩解全球暖化現象,本研究預利用光電埤塘發電,滿足區域民生用電之需求,此發電系統由浮力式太陽能及儲能電池所組成,為了確保系統可靠度,當電力供不應求時,將以台電與儲能系統作為輔助;電力供過於求時,電力可以儲存或供應給附近區域。
本研究建立的數學模型,屬於多目標混合整數規劃,加入裝置容量、滿足需求等多項限制,為了不影響水面景觀與水中生態,本研究將對浮力式太陽能設置面積加以限制。為了確定模型之效果,將以桃園市復興區作為研究案例,由於此區域擁有豐富埤塘資源,並且屬於高山地形,經常因為強風豪雨導致當地停電,對於人民生活帶來不便。若能對再生能源供給進行規劃,有助於再生能源滿足區域民生用電需求,以及減少溫室氣體排放量。為了了解不同季節太陽能發電量之差異,本研究將以一年的數據進行實驗。
接著蒐集桃園市復興區之用電量,與歷年日射量數據,將數據代入模型,並利用Gurobi軟體進行規劃求解。本研究在不同預算下,以最小化二氧化碳排放成本以及輸電成本為目標,目的為增加再生能源的使用量,進而減少溫室氣體的排放量。同時以最小化輸電成本,進行區域能源分配。藉此獲得光電埤塘滿足民生用電之最佳規劃,達到能
源管理之目的。
摘要(英) Global warming mainly results from human activities such as burning fossil fuels and deforestation. The use of renewable energy (RE) serves as an alternative way to reduce greenhouse gas (GHG) emissions. RE is available all across the globe and they are considered environmentally friendly.
RE is a source of energy that occurs and replenishes in a natural manner without human intervention. However, if we wish to replace fossil energy with RE, overcoming their intermittent supply is a great challenge. Energy management is critical for the sustainable development of our environment.
Nowadays, with the advance of science and technology, the popularity of electrical appliances has led to an increase in electricity consumption. Fossil fuels have been in great demand, and power shortage has become a serious issue bringing inconvenience to our daily lives. In order to prevent power shortage and global warming, this research attempts to meet residential electricity demand with floating photovoltaic power. This power generation system consists of floating photovoltaic panels and a storage unit.
This research adopts multiple-objective mixed integer programming to minimize CO2 emission costs and the costs to transport energy. Our focus to minimizeCO2 emission costs is to increase the use of RE, thereby resulting in a reduction of GHG emissions. Moreover, regional energy allocation is accomplished with the minimization of transmission costs. This will achieve optimal planning to meet residential electricity demand.
關鍵字(中) ★ 再生能源
★ 浮力式太陽能
★ 能源管理
★ 多目標混合整數規劃
關鍵字(英) ★ renewable energy
★ floating photovoltaic
★ energy management
★ multiple objective mixed integer programming
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究架構與流程 3
第二章 相關議題與文獻探討 4
2.1 再生能源現況 4
2.2 浮力式太陽能 6
2.3 電力供給規劃 11
第三章 問題描述與研究方法 12
3.1 問題描述 12
3.2 研究案例 13
3.3 研究方法 16
第四章 數學模型建構 17
4.1基本假設 17
4.2變數定義 18
4.3數學模型 19
第五章 情境設計與結果分析 23
5.1 資料蒐集 23
5.2 情境分析 30
第六章 結論與建議 37
6.1 研究回顧 37
6.2 未來可研究方向 38
參考文獻 40
參考文獻 中文文獻
1. 大氣水文研究資料庫(2018)。局屬(逐時)地面站資料庫。網址為https://dbahr.narlabs.org.tw/Default.aspx。取自2018年5月8日。
2. 內政部(2017)。內政部統計月報。網址為https://goo.gl/ifbYWa。取自2018年4月25日。
3. 台灣電力公司(2017)。各縣市太陽光電容量因數。網址為https://goo.gl/G1LpuJ。取自2018年5月15日。
4. 台灣電力公司(2017)。每月住宅及小商店實際用電情形。網址為https://goo.gl/ApRRzK。取自2018年3月20日。
5. 台灣電力公司(2017)。溫室氣體排放係數。網址為https://data.gov.tw/dataset/30151。取自2018年5月28日。
6. 台灣電力公司(2018)。各縣市村里售電資訊。網址為https://goo.gl/XGux7j。取自
2018年3月15日。
7. 桃園市復興區公所(2018)。本區介紹-行政區域。網址為https://goo.gl/4EsJBY。取自2018年3月23日。
8. 張明輝,洪瑋廷,蔡家揚,馬維揚,余基雄(2015年11月)。水上發電機組浮動平台與其錨泊系統之技術開發。第37屆海洋工程研討會,國立中興大學,台灣。
9. 經濟部水利署(2016)。阿公店水庫浮力式太陽能發電系統計畫。水利署電子報,
第195期,第1-2頁。
10. 經濟部能源局(2016)。2016年能源供給(按能源別)及國內能源消費(按部門別)。能源統計年報,第18-19頁。
11. 經濟部能源局(2017)。2017年及2018年輸配電業各項費率方案。網址為http://www.tri.org.tw/open/transmission.pdf。取自2018年5月21日。
12. 謝明叡(2015)。 主要國家再生能源政策執行效益評析。台灣綜合研究院,第2-22頁。
英文文獻
13. Arnette, A., Zobel, C. W. (2012). An Optimization Model for Regional Renewable Energy Development. Renewable and Sustainable Energy Reviews, 16(7), 4606-4615.
14. Choi, Y. K., Lee, N. H., Lee, A. K., Kim, K. J. (2013). A Study on Major Design Elements of Tracking-Type Floating Photovoltaic Systems. International Journal of Smart Grid and Clean Energy, 3(1), 70-74.
15. Cazzaniga, R., Cicu, M., Rosa-Clota, M., Rosa-Clota, P., Tina, G. M., Ventura., C. (2017). Floating Photovoltaic Plants: Performance Analysis and Design Solutions. Renewable and Sustainable Energy Reviews, 81(2), 1730-1741.
16. Chen, Y. T. (2017). The Factors Affecting Electricity Consumption and the Consumption Characteristics in the Residential Sector - A Case Example of Taiwan. Sustainability, 9(8), 1-16.
17. Choi, Y. K. (2013). A Case Study on Suitable Area and Resource for Development of Floating Photovoltaic System. World Academy of Science, Engineering and Technology International Journal of Electrical and Computer Engineering, 8(5), 835-839.
18. Choi, Y. K., Lee, Y. G. (2014). A Study on Development of Rotary Structure for Tracking-Type Floating Photovoltaic System. International Journal of Precision Engineering and Manufacturing, 15(11), 2453-2460.
19. Ciel et Terre. (2017). The Floating Solar Expert. Available from https://www.ciel-et-terre.net/. Accessed 17 February 2018.
20. Ciel et Terre. (2018). Hydrelio Floating Solar System Benefit. Available from http://cieletterre.cn/wp-content/uploads/Hydrelio.pdf. Accessed 15 June 2018.
?
21. Danigelis, A. (2011). Here′s an Idea: Floating Webs that Capture Sun, Wave Power. Discovery News. Available from https://goo.gl/5659Xk. Accessed 13 February 2018.
22. Duda, J. R., Yost II, B., Long, R. (2018). Carbon Dioxide Enhanced Oil Recovery. National Energy Technology Laboratory (NETL), 13-15.
23. Ferran, J. J., Ferrer, P. S., Ferrer, C. M., et al. (2012, July). Cubricion de Embalses Mediante un Sistema de Cubierta Flotante Fotovoltaico: Analisis Tecnico y Economico. XVI International Congress on Project Engineering, Spanish Association of Project Management and Engineering (AEIPRO), Valencia, Spain.
24. Gaikwad, O.D., Deshpande, U. L. (2017). Evaporation Control Using Floating PV System and Canal Roof Top Solar System. International Research Journal of Engineering and Technology (IRJET), 4(4), 214-216.
25. Hirst, D. (2018). Carbon Price Floor (CPF) and the Price Support Mechanism. The House of Commons Library, 4-11.
26. International Energy Agency, IEA (2017). Electricity Information: Overview. International Energy Agency, 3-8.
27. International Renewable Energy Agency, IRENA (2017). Renewable Power Generation Costs in 2017. International Renewable Energy Agency, 14-30.
28. Lee, A. K., Shin, G. W., Hong, S. T., Choi, Y. K. (2013). A Study on Development of ICT Convergence Technology for Tracking-Type Floating Photovoltaic Systems. International Journal of Smart Grid and Clean Energy, 3(1), 80-87.
29. Mallikarjun, S., Lewis, H. F. (2014). Energy Technology Allocation for Distributed Energy Resources: A Strategic Technology-Policy Framework. Energy, 72, 783-799.
30. Mann, W. (2014). UK’s First Floating Solar Farm Installed. New Civil Engineer. Available from https://goo.gl/KmhFyE. Accessed 13 February 2018.
?
31. Mittal, D., Saxena, B. K., Rao, K.V. S. (2017, April). Floating Solar Photovoltaic Systems: An Overview and Their Feasibility at Kota in Rajasthan. International Conference on Circuits Power and Computing Technologies (ICCPCT), Kollam, India.
32. Mohammadi, M., Ghasempour, R., Astaraei, F. R., Ahmadi, E., Aligholian, A., Toopshekan, A. (2018). Optimal Planning of Renewable Energy Resource for a Residential House Considering Economic and Reliability Criteria. International Journal of Electrical Power & Energy Systems, 96, 261-273.
33. Muscat, M. (2014). A Study of Floating PV Module Efficiency. Master′s Thesis, University of Malta, 16-18.
34. National Oceanic and Atmospheric Administration, NOAA (2017). Is Sea Level Rising. National Oceanic and Atmospheric Administration. Available from https://goo.gl/TZPxbA. Accessed 10 March 2018.
35. National Oceanic and Atmospheric Administration, NOAA (2018). Trends in Atmospheric Carbon Dioxide. National Oceanic and Atmospheric Administration. Available from https://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed 10 March 2018.
36. Neslen, A. (2015). Wind Power Generates 140% of Denmark′s Electricity Demand. The Guardian. Available from https://goo.gl/VKnBKg. Accessed 27 January 2018.
37. Ogunjuyigbe, A. S. O., Ayodele, T. R., Akinola, O. A. (2016). Optimal Allocation and Sizing of PV/Wind/Split - Diesel/Battery Hybrid Energy System for Minimizing Life Cycle Cost, Carbon Emission and Dump Energy of Remote Residential Building. Applied Energy, 171, 153-171.
38. Patil, S., Wagh, M., Shinde, N. (2017). A Review on Floating Solar Photovoltaic Power Plants. International Journal of Scientific and Engineering Research, 8(6), 789-794.
?
39. Rajendra, K., Myles, R., Vicente, R., et al. (2015). Climate Change 2014: Synthesis Report. Fifth Assessment Report, Intergovernmental Panel on Climate Change (IPCC), 40-47.
40. Ralon, P., Taylor, M., Ilas, A., Harald, D. B., Kairies, K. P. (2017). Electricity Storage and Renewables: Costs and Markets to 2030. International Renewable Energy Agency (IRENA), 23-45.
41. Renewable Energy Policy Network for the 21st Century, REN21 (2017, June). The Renewables Global Status Report (GSR). Renewable Energy Policy Network for the 21st Century, Paris, France.
42. Smyth, M., Russell, J., Milanowski, T. (2011). Solar Energy in the Wine Making Industry. London: Springer.
43. Trapani, K., Santafe, M. R. (2014). A review of floating photovoltaic installations: 2007-2013. Progress in Photovoltaics: Research and Applications, 23(4), 524-532.
44. United Nations Framework Convention on Climate Change, UNFCCC (1998, December). Kyoto Protocol, the Conference of the Parties 18th (COP18), Kyoto, Japan.
45. United Nations Framework Convention on Climate Change, UNFCCC (2015, December). Paris Agreement, the Conference of the Parties 21th (COP21), Paris, France.
46. Warburg, P. (2016). Floating Solar Is A Win-Win Energy Solution for Drought-Stricken US Lakes. The Guardian. Available from https://goo.gl/XZLmov. Accessed 3 February 2018.
47. Wasthage, L. (2017). Optimization of Floating PV Systems: Case Study for a Shrimp Farm in Thailand. Malardalen University Sweden, 20-23.
48. Woldeyohannes, A. D., Woldemichael, D. E., Baheta, A. T. (2016). Sustainable Renewable Energy Resources Utilization in Rural Areas. Renewable and Sustainable Energy Reviews, 66, 1-9.
指導教授 王?泰(Chi-Tai, Wang) 審核日期 2018-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明