博碩士論文 105426005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.140.198.12
姓名 許智翔(Chih-Hsiang Hsu)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 以模糊理論為基礎之TFT-LCD廠的AMHS派送控制研究
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著科技的日新月異,電子產品的應用日漸發達,生活中常見的電子設備如電視、手機、電腦、平板電腦皆使用TFT-LCD面板,以達到高畫質的表現。由於這些電子產品的市場需求非常大,因此也帶動TFT-LCD面板的需求大量增加。為了增加TFT-LCD面板的產量,TFT-LCD面板業者生產更大面積的玻璃基板,藉此增加面板的產量。大尺寸的玻璃基板仰賴更大世代的TFT-LCD製造廠製造。目前的生產技術將TFT-LCD廠推進到第八代。為了因應大量的需求,除了製造大型的玻璃基板外,提高玻璃基板的產量也能有效解決需求的問題。而TFT-LCD廠建置完成後,又要再提升其產量,就需要提升TFT-LCD廠內物料的流動效率。
由於第八代TFT-LCD廠之自動化物料搬運系統分為In-Line Stocker系統及RGV系統,因此派送問題涉及各系統間的派送控制及跨系統時的派送控制。In-Line Stocker系統中存在「Stacker Crane載取Cassette時的選取問題」及「Stacker Crane載取Cassette運送至出口點的控制問題」;RGV系統中則有「RGV載取Cassette時的選取問題」。本研究以模糊邏輯理論為基礎,將生產過程中的關鍵屬性搓合,發展模糊邏輯派送方法。利用模擬實驗觀察所提出的法則在不同績效指標下的表現,期望此派送方法能夠有效的改善TFT-LCD廠內的物料流動效率,並提升其生產效率。
摘要(英) With the advancement of technology, the application of electronic products is increasingly developed, and TFT-LCD panels are commonly used in electronic devices such as televisions, smart phones, computers, and laptops for high image quality. The demand for these electronic products is very large, so the demand for TFT-LCD panels is also increasing. In order to increase the output of the panel, TFT-LCD panel manufacturers produce larger areas of glass substrates. Large-size glass substrates are manufactured by a larger generation of TFT-LCD manufacturers, and the current TFT-LCD factory is the eighth generation. After the TFT-LCD factory is builed, it is necessary to increase the flow efficiency of the materials in the TFT-LCD factory to increase the throughput.
The automated material handling system of the 8th generation TFT-LCD factory is divided into In-Line Stocker system and RGV system. The delivery problem involves delivery between systems and delivery across systems. In the In-Line Stocker system, there are Selection problem when Stacker Crane carries Cassette and Selection problem when Stacker Crane take Cassette to the exit point. In the RGV system, there is a Selection problem when RGV carries Cassette. This study combines key attributes in the production process and develops three fuzzy logic delivery methods based on fuzzy logic theory. The simulation experiment is used to observe the performance of the proposed rule under different performance indicators. It is expected that the proposed fuzzy delivery methods can effectively improve the material flow efficiency in the TFT-LCD plant and improve its production efficiency.
關鍵字(中) ★ TFT-LCD
★ 自動化物料搬運系統
★ 模糊邏輯理論
關鍵字(英) ★ TFT-LCD
★ Automated material handleing system
★ Fuzzy logic theory
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 自動化物料搬運系統(AMHS) 2
1.3 研究目的 3
1.4 研究環境與假設 3
1.5 研究架構 4
第二章 文獻探討 6
2.1 TFT-LCD的基本介紹 6
2.2 TFT-LCD的製程介紹 7
2.3 TFT-LCD廠自動化物料搬運系統介紹 11
2.4 TFT-LCD廠與半導體晶圓廠AMHS派送控制文獻探討 15
2.5 具有存儲和運送功能的S/R MACHINE派送控制相關文獻探討 22
2.6 無人搬運車派送控制相關文獻探討 25
第三章 研究設計與研究方法 31
3.1 問題分析 31
3.2 研究環境 32
3.3 TFT-LCD生產系統說明 34
3.4 AMHS作業流程 37
3.4.1 Intrabay系統之Stacker Crane作業流程 38
3.4.2 Interbay系統之RGV作業流程 46
3.5 AMHS派送控制方法 56
3.5.1 模糊邏輯控制方法 56
3.5.2 Stacker Crane之Cassette選取法則 62
3.5.3 Stacker Crane之出口點選擇法則 63
3.5.4 RGV之Cassette選取法則 64
第四章 實驗結果與分析 65
4.1 實驗設計 65
4.1.1 實驗環境 66
4.1.2 實驗環境設定 68
4.1.3 環境假設 68
4.1.4 模擬實驗因子 69
4.1.5 實驗績效評估指標 71
4.2 統計分析 72
4.2.1 依「系統總產出量(Total Throughput)」為績效評估指標 73
4.2.2 依「平均流程時間(Average Flow Time)」為績效評估指標 80
4.2.3 依「平均延遲時間(Average Lateness)」為績效評估指標 89
4.2.4 依「平均遲到時間(Average Tardiness)」為績效評估指標 97
4.2.5 依「平均提早時間(Average Earliness)」為績效評估指標 106
4.3 實驗結論 114
第五章 結論與後續建議 116
5.1 研究結論 116
5.2 未來研究建議 117
參考文獻 118
參考文獻 一、 中文文獻
1. 吳豐全,2001,「多載量AGV的控制方法」,國立中央大學工業管理所,碩士論文。
2. 紀碧如,2005,「基因演算法用於增加產能的研究-以 TFT-LCD 廠 Array 製程 RGV 搬送為例」,國立交通大學,碩士論文。
3. 梁國鋒,2005,「300mm 晶圓廠自動倉儲 (stocker) 之晶舟選取運送法則的研究」,國立中央大學工業管理所,碩士論文。
4. 陳永昇,2002,「多載量無人搬運車法則的研究」,國立中央大學工業管理所,博士論文。
5. 彭國維,2005,「300mm 半導體廠之 OHT 派車控制法則的研究」,國立中央大學工業管理所,博士論文。
6. 廖韋昌,2002,「模糊投標式多載量AGV之控制方法」,國立中央大學工業管理所,碩士論文。
7. 劉顥程,2012,「製造系統之無人搬運車的控制問題研究」,國立中央大學工業管理所,博士論文。
8. 鄭哲昀,2012,「晶圓廠Interbay自動化物料搬運系統中自動倉儲(Stocker)內的晶舟盒選取之研究」,國立中央大學工業管理所,碩士論文。
9. 簡四華,2004,「在封閉式系統下多載量AGV之運送派車法則的研究」,國立中央大學工業管理所,碩士論文
10. 蘇騰昇,2002,「在 TFT-LCD 廠的設施佈置與自動化物料搬運系統控制之研究」,國立中央大學工業管理所,博士論文。


二、 英文文獻
1. Asokan, P., Jerald, J., Arunachalam, S., & Page, T. (2008). Application of adaptive genetic algorithm and particle swarm optimisation in scheduling of jobs and AS/RS in FMS. International Journal of Manufacturing Research, 3(4), 393-405.
2. Atmaca, E., & Ozturk, A. (2013). Defining order picking policy: A storage assignment model and a simulated annealing solution in AS/RS systems. Applied Mathematical Modelling, 37(7), 5069-5079.
3. Azimi, P., Haleh, H., & Alidoost, M. (2010). The selection of the best control rule for a multiple-load AGV system using simulation and fuzzy MADM in a flexible manufacturing system. Modelling and Simulation in Engineering, 2010, 7.
4. Berbeglia, G., Cordeau, J. F., & Laporte, G. (2010). Dynamic pickup and delivery problems. European journal of operational research, 202(1), 8-15.
5. Brezovnik, S., Gotlih, J., Bali?, J., Gotlih, K., & Brezo?nik, M. (2015). Optimization of an automated storage and retrieval systems by swarm intelligence. Procedia Engineering, 100, 1309-1318.
6. Chan, F. T. S., Chan, H. K., Lau, H. C. W., & Ip, R. W. L. (2003). Analysis of dynamic dispatching rules for a flexible manufacturing system. Journal of Materials Processing Technology, 138(1), 325-331.
7. Chang, C. Y., & Chiang, K. H. (2009). Intelligent fuzzy accelerated method for the nonlinear 3-D crane control. Expert Systems with Applications, 36(3), 5750-5752.
8. Chen, F. F., Huang, J., & Centeno, M. A. (1999). Intelligent scheduling and control of rail-guided vehicles and load/unload operations in a flexible manufacturing system. Journal of Intelligent Manufacturing, 10(5), 405-421.
9. Cheng, T. C. E. (1987). A simulation study of automated guided vehicle dispatching. Robotics and Computer-Integrated Manufacturing, 3(3), 335-338.

10. Christopher, J. (2005). A Simulation Study of Automated Material Handling Systems in Semiconductor Fabs.
11. Chung, J. (2015). Estimating arrival times of transportation jobs for automated material handling in LCD fabrication facilities. Journal of Manufacturing Systems, 35, 112-119.
12. EGBELU, P. J. (1991). Framework for dynamic positioning of storage/retrieval machines in an automated storage/retrieval system. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 29(1), 17-37.
13. Egbelu, P. J., & Tanchoco, J. M. (1984). Characterization of automatic guided vehicle dispatching rules. The International Journal of Production Research, 22(3), 359-374.
14. Egbelu, P. J., & Wu, C. T. (1993). A comparison of dwell point rules in an automated storage/retrieval system. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 31(11), 2515-2530.
15. Erol, R., Sahin, C., Baykasoglu, A., & Kaplanoglu, V. (2012). A multi-agent based approach to dynamic scheduling of machines and automated guided vehicles in manufacturing systems. Applied soft computing, 12(6), 1720-1732.
16. Giordano, V., Zhang, J. B., Naso, D., Wong, M. M., Lewis, F. L., & Carbotti, A. (2006, December). Matrix-based discrete event control of automated material handling systems. In Decision and Control, 2006 45th IEEE Conference on (pp. 6074-6079). IEEE.
17. Hino, H., Kobayashi, Y., Higashi, T., & Ota, J. (2009, December). Control methodology of stacker cranes for collision avoidance considering dynamics in a warehouse. In Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on (pp. 983-988). IEEE.
18. Ho, Y. C. (2000). A dynamic-zone strategy for vehicle-collision prevention and load balancing in an AGV system with a single-loop guide path. Computers in industry, 42(2), 159-176.
19. Ho, Y. C., & Lee, C. S. (2004). A No-Cost Zone and Iso-Cost Line Based Control Method for an AS/RS with a Multiple-Load S/R Machine. Journal of the Chinese Institute of Industrial Engineers, 21(1), 1-17.
20. Ho, Y. C., & Liu, H. C. (2006). A simulation study on the performance of pickup-dispatching rules for multiple-load AGVs. Computers & Industrial Engineering, 51(3), 445-463.
21. Ho, Y. C., & Liu, H. C. (2009). The performance of load-selection rules and pickup-dispatching rules for multiple-load AGVs. Journal of Manufacturing Systems, 28(1), 1-10.
22. Ho, Y. C., & Su, T. S. (2012). The machine layout within a TFT-LCD bay with a multiple-stacker crane in-line stocker. International Journal of Production Research, 50(18), 5152-5172.
23. Ho, Y. C., Lin, J. W., Liu, H. C., & Yih, Y. (2016). A study on the lot production management in a thin-film-transistor liquid-crystal display fab. Journal of Manufacturing Systems, 40, 9-25.
24. Hu, W., & Mao, J. (2012, December). Online dispatching of rail-guided vehicles in an automated air cargo terminal. In Industrial Engineering and Engineering Management (IEEM), 2012 IEEE International Conference on (pp. 1344-1348). IEEE.
25. Hu, Y. H., Huang, S. Y., Chen, C., Hsu, W. J., Toh, A. C., Loh, C. K., & Song, T. (2005). Travel time analysis of a new automated storage and retrieval system. Computers & Operations Research, 32(6), 1515-1544.
26. Huang, C. W., & Lin, J. T. (2016). A pre-dispatching vehicle method for a diffusion area in a 300 mm wafer fab. Journal of Industrial and Production Engineering, 33(8), 579-591.
27. Hwang, H., & Kim, S. H. (1998). Development of dispatching rules for automated guided vehicle systems. Journal of Manufacturing Systems, 17(2), 137-143.
28. Hwang, H., & Lim, J. M. (1993). Deriving an optimal dwell point of the storage/retrieval machine in an automated storage/retrieval system. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 31(11), 2591-2602.
29. Jeong, B., Kim, S. W., & Lee, Y. J. (2001). An assembly scheduler for TFT LCD manufacturing. Computers & Industrial Engineering, 41(1), 37-58.

30. Kesen, S. E., & Baykoc, O. F. (2007). Simulation of automated guided vehicle (AGV) systems based on just-in-time (JIT) philosophy in a job-shop environment. Simulation Modelling Practice and Theory, 15(3), 272-284.
31. Kim, B. I., & Park, J. (2009). Idle vehicle circulation policies in a semiconductor FAB. Journal of Intelligent Manufacturing, 20(6), 709-717.
32. Kim, B. I., Shin, J., Jeong, S., & Koo, J. (2009). Effective overhead hoist transport dispatching based on the Hungarian algorithm for a large semiconductor FAB. International Journal of Production Research, 47(10), 2823-2834.
33. Kim, C. W., Tanchoco, J. M. A., & Koo, P. H. (1999). AGV dispatching based on workload balancing. International Journal of Production Research, 37(17), 4053-4066.
34. Kim, D. B., Hwang, H., & Yoon, W. C. (1995). Developing a dispatching rule for an automated guided vehicle system using a fuzzy multi-criteria decision-making method. Engineering Optimization, 24(1), 39-57.
35. Klei, C. M., & Kim, J. (1996). AGV dispatching. International Journal of Production Research, 34(1), 95-110.
36. Koo, P. H., & Jang, J. (2002). Vehicle travel time models for AGV systems under various dispatching rules. International Journal of Flexible Manufacturing Systems, 14(3), 249-261.
37. Kung, Y., Kobayashi, Y., Higashi, T., Sugi, M., & Ota, J. (2014). Order scheduling of multiple stacker cranes on common rails in an automated storage/retrieval system. International Journal of Production Research, 52(4), 1171-1187.
38. Lee, H. F., & Schaefer, S. K. (1996). Retrieval sequencing for unit-load automated storage and retrieval systems with multiple openings. International Journal of Production Research, 34(10), 2943-2962.
39. Lee, J. (1999). Dispatching rail-guided vehicles and scheduling jobs in a flexible manufacturing system. International journal of production research, 37(1), 111-123.
40. Lee, K. K., Yoon, W. C., & Baek, D. H. (2001). Generating interpretable fuzzy rules for adaptive job dispatching. International Journal of Production Research, 39(5), 1011-1030.
41. Lee, K. K., Yoon, W. C., & Baek, D. H. (2001). Generating interpretable fuzzy rules for adaptive job dispatching. International Journal of Production Research, 39(5), 1011-1030.
42. Li, M., Chen, X., & Chen, X. (2010, July). A hybrid genetic algorithm for dispatching optimization problem of transportation system in Automated Storage and Retrieval System. In Intelligent Control and Automation (WCICA), 2010 8th World Congress on (pp. 1206-1211). IEEE.
43. Li, L., Sun, Z., Zhou, M., & Qiao, F. (2013). Adaptive dispatching rule for semiconductor wafer fabrication facility. IEEE Transactions on Automation Science and Engineering, 10(2), 354-364.
44. Li, Y., Jiang, Z., & Jia, W. (2014). An integrated release and dispatch policy for semiconductor wafer fabrication. International Journal of Production Research, 52(8), 2275-2292.
45. Li, Y., Zheng, J. Q., & Yang, S. L. (2010). Multi-agent-based fuzzy scheduling for shop floor. The International Journal of Advanced Manufacturing Technology, 49(5), 689-695.
46. Liao, D. Y., & Wang, C. N. (2006). Differentiated preemptive dispatching for automatic materials handling services in 300 mm semiconductor foundry. The International Journal of Advanced Manufacturing Technology, 29(9), 890-896.
47. Lim, J. K., Kim, K. H., Yoshimoto, K., Lee, J. H., & Takahashi, T. (2003). A dispatching method for automated guided vehicles by using a bidding concept. OR Spectrum, 25(1), 25-44.
48. Lin, J. T., Wang, F. K., & Chang, Y. M. (2006). A hybrid push/pull-dispatching rule for a photobay in a 300mm wafer fab. Robotics and Computer-Integrated Manufacturing, 22(1), 47-55.
49. Lin, J. T., Wang, F. K., & Peng, C. C. (2008). Lot release times and dispatching rule for a TFT-LCD cell process. Robotics and Computer-Integrated Manufacturing, 24(2), 228-238.
50. Lin, J. T., Wang, F. K., & Wu, C. K. (2003). Simulation analysis of the connecting transport AMHS in a wafer fab. IEEE transactions on semiconductor manufacturing, 16(3), 555-564.
51. Lin, J. T., Wang, F. K., & Yen, P. Y. (2001). Simulation analysis of dispatching rules for an automated interbay material handling system in wafer fab. International Journal of Production Research, 39(6), 1221-1238.
52. Liu, H. C., & Yih, Y. (2013). A fuzzy-based approach to the liquid crystal injection scheduling problem in a TFT-LCD fab. International Journal of Production Research, 51(20), 6163-6181.
53. Lu, M. S., & Liu, Y. J. (2011). Dynamic dispatching for a flexible manufacturing system based on fuzzy logic. The International Journal of Advanced Manufacturing Technology, 54(9), 1057-1065.
54. Narahari, Y., & Khan, L. M. (1997). Modeling the effect of hot lots in semiconductor manufacturing systems. IEEE Transactions on Semiconductor Manufacturing, 10(1), 185-188.
55. Nazzal, D., & El-Nashar, A. (2007, December). Survey of research in modeling conveyor-based automated material handling systems in wafer fabs. In Proceedings of the 39th conference on Winter simulation: 40 years! The best is yet to come (pp. 1781-1788). IEEE Press.
56. Qin, W., Zhang, J., & Sun, Y. (2013). Dynamic dispatching for interbay material handling by using modified Hungarian algorithm and fuzzy-logic-based control. The International Journal of Advanced Manufacturing Technology, 67(1-4), 295-309.
57. Rouwenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G. J., Mantel, R. J., & Zijm, W. H. M. (2000). Warehouse design and control: Framework and literature review. European Journal of Operational Research, 122(3), 515-533.
58. Sarin, S. C., Varadarajan, A., & Wang, L. (2011). A survey of dispatching rules for operational control in wafer fabrication. Production Planning and Control, 22(1), 4-24.
59. Shin, H. J., & Kang, Y. H. (2010). A rework-based dispatching algorithm for module process in TFT-LCD manufacture. International Journal of Production Research, 48(3), 915-931.
60. Singh, N., Sarngadharan, P. V., & Pal, P. K. (2011). AGV scheduling for automated material distribution: a case study. Journal of intelligent manufacturing, 22(2), 219-228.
61. Smoczek, J., & Szpytko, J. (2014). Evolutionary algorithm-based design of a fuzzy TBF predictive model and TSK fuzzy anti-sway crane control system. Engineering Applications of Artificial Intelligence, 28, 190-200.
62. Sun, D. S., Park, N. S., Lee, Y. J., Jang, Y. C., Ahn, C. S., & Lee, T. E. (2005, April). Integration of lot dispatching and AMHS control in a 300mm wafer FAB. In Advanced Semiconductor Manufacturing Conference and Workshop, 2005 IEEE/SEMI (pp. 270-274). IEEE.
63. Tan, K. K., & Tang, K. Z. (2001). Vehicle dispatching system based on Taguchi-tuned fuzzy rules. European Journal of Operational Research, 128(3), 545-557.
64. Tan, K. K., & Tang, K. Z. (2001). Vehicle dispatching system based on Taguchi-tuned fuzzy rules. European Journal of Operational Research, 128(3), 545-557.
65. Tseng, S. S., Chang, F. M., Chu, Y. S., & Chi, P. J. (2011). A GA-based method to reduce material handling: the case of TFT-LCD array Fabs in Taiwan. International Journal of Production Research, 49(22), 6691-6711.
66. Wang, C. N. (2009). The heuristic dispatching method of automatic material handling system in 300mm semiconductor fabrication. International Journal of Innovative Computing, Information and Control, 5(7), 1927-1935.
67. Wang, J. Y., & Yih, Y. (1997). Using neural networks to select a control strategy for automated storage and retrieval systems (AS/RS). International Journal of Computer Integrated Manufacturing, 10(6), 487-495.
68. Wang, X., & Lu, J. (2010, November). Research on Control Method of Neural Network for Stacker Crane. In E-Product E-Service and E-Entertainment (ICEEE), 2010 International Conference on (pp. 1-4). IEEE.
69. Weiss, M. (1997, September). 300 mm fab automation technology options and selection criteria. In Advanced Semiconductor Manufacturing Conference and Workshop, 1997. IEEE/SEMI (pp. 373-379). IEEE.
70. Wu, C. Q., Luo, J., Tang, H. G., Li, B., & Pan, Y. H. (2009, July). Cycle-deadlock control of RGV system via Petri net. In Computer Science & Education, 2009. ICCSE′09. 4th International Conference on (pp. 523-528). IEEE.
71. Wu, H. H., Chen, C. P., Tsai, C. H., & Yang, C. J. (2010). Simulation and scheduling implementation study of TFT-LCD Cell plants using Drum–Buffer–Rope system. Expert Systems with Applications, 37(12), 8127-8133.
72. Wu, L. H., Mok, P. Y., & Zhang, J. (2011). An adaptive multi-parameter based dispatching strategy for single-loop interbay material handling systems. Computers in Industry, 62(2), 175-186.
73. Wu, L., Zhang, G., Sun, Y., & Zhang, J. (2010, October). A fuzzy logic-based and hybrid dispatching policy for interbay material handling system in 300mm semiconductor manufacturing system. In Supply Chain Management and Information Systems (SCMIS), 2010 8th International Conference on (pp. 1-6). IEEE.
74. Xu, W. H., Xiong, J., & Yao, G. Z. (2012). Self-learning genetic algorithms for RGV optimization scheduling. In Advanced Materials Research (Vol. 562, pp. 1706-1711). Trans Tech Publications.
75. Yang, T., & Lu, J. C. (2010). A hybrid dynamic pre-emptive and competitive neural-network approach in solving the multi-objective dispatching problem for TFT-LCD manufacturing. International Journal of Production Research, 48(16), 4807-4828.
76. Yao, S., Jiang, Z., Li, N., Geng, N., & Liu, X. (2011). A decentralised multi-objective scheduling methodology for semiconductor manufacturing. International Journal of Production Research, 49(24), 7227-7252.
77. Yim, D. S., & Linnt, R. J. (1993). Push and pull rules for dispatching automated guided vehicles in a flexible manufacturing system. The International Journal of Production Research, 31(1), 43-57.
78. Zaied, A. H. R. (2008). Quantitative models for planning and scheduling of flexible manufacturing system. Emirates Journal for Engineering Research, 13(2), 11-19.





三、 參考網站
1. 群創光電,2018,技術專區,Retrieved June 1,2018,from
http://www.innolux.com/Pages/TW/Technology_TW.html
2. 中華映管,2018,TFT-LCD基礎技術-TFT,Retrieved June 1,2018,from
http://www.cptt.com.tw/cptt/chinese/index.php?option=com_content&task=view&id=40&Itemid=90
3. 村田機械,2018,無塵室自動化,Retrieved June 1,2018,from
http://www.muratec.tw/corp/division/cfa.html
指導教授 何應欽(Ying-Chin Ho) 審核日期 2018-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明