博碩士論文 105426605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.225.56.194
姓名 黄妲(Hoang Duc Bui)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 運用AHP評估在越南適合裝設屋頂太陽能發電的城市
(Site Selection for Rooftop Solar PV Using AHP-based Approaches—The Case of Vietnam)
相關論文
★ 半導體化學材料銷售策略分析-以跨國B化工公司為例★ TFT-LCD CELL製程P檢點燈不良解析流程改善之關聯法則應用
★ 金融風暴時期因應長鞭效應的策略 –以X公司為例★ 勞動生產力目標訂定之研究-DEA 資料包絡法應用
★ 應用田口方法導入低溫超薄ITO透明導電膜於電容式觸控面板之研究★ 多階不等效平行機台排程與訂單決策
★ 多準則決策之應用-以雷射半導體產業為例★ 專案管理模式進行品管圈活動-以半導體機台保養測機流程改善為例
★ 應用e8D降低不合格品之效益分析-以快速消費品製造為例★ 供應商評選模式之建構-以塑膠射出成型機製造為例
★ 應用協同規劃預測補貨於伺服器備品存貨改善之研究-以Q代工公司為例★ 船用五金拋光作業之生產規劃
★ 以SCOR模型探討汽車安全輔助系統供應鏈-以A公司採購作業改善為例★ 研發補助計畫執行成效評估之研究以「工業基礎技術專案計畫」為例
★ 運用生態效益發展永續之耳機產業★ 失效模式設計審查(DRBFM)之應用-以筆記型電腦為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在競爭激烈的環境中,許多國家認為透過環境影響和技術發展來評估太陽能的效率是明智的決定。越南也跟上了這波潮流,近年來逐漸投資和發展太陽能。為了提高太陽能的效率、適當的發揮地利用和管理該項資源,選擇合適的位置來設置太陽能系統便是首要關注的問題。經由分析社會因素、經濟因素、環境和政治方面等許多考量,本論文可以有效的選擇出適合的位置來安裝太陽能板。
多準則決策(Multi-criteria decision making;MCDM)是尋找主觀和矛盾之間解決方法。MCDM法提供了處理和引用大規模指標的特殊工具,並且可以獲得詳細解決方法。本論文應用了MCDM方法中常見的層級分析法(Analytical Hierarchical Process;AHP),透過考慮定量定性因素,本文可以找出適合在越南設置太陽能板的場址。
研究結果顯示本論文模型可以運用在重要的政策制定,並且可透過該模型獲得總體的代替方案。未來,專家們可以根據研究問題的實際情況調整參數。

關鍵字:選址,再生能源,屋頂型太陽能板,多準則決策(MCDM),層級分析法(AHP)。
摘要(英) In current competitive circumstances, many countries believe in evaluating the efficiency of solar energy by both environmental impact and technological development are the sensible decision. Having caught up with the trend of the world, Vietnam has gradually invested and developed in solar energy in recent years. On this subject, to be able to use and manage this solar energy resource well, choose a suitable location to implement a solar project is a substantial concern. With the associated by many important aspects like environmental, economic, social and political, to achieved solar energy effectively we need to depth analysis of those aspects for solar project site selection.
Planning by utilizing multi-criteria exploration has interested the attention for a long time to find a solution to subjective and contradictory criteria. Multi-criteria decision-making (MCDM) method put forward certain appliance to be used in managing and bringing comprehensive scaling indicators with each other, it also present relevant assistance for determining and ex-plaining the problem in particulars. With this orientation, the objective of this study is to select an appropriate site in the case of Vietnam put to use the Analytical Hierarchical Process (AHP) which is the world most widely used MCDM method under consideration both qualitative and quantitative element play an effective function in decision makings process.
The result indicates that the overall ranking of alternative and decision making (DM) can be achieved through adopted the proposed model. Depending on circumstances, we can modify to get the most suitable criteria for the problem, and with the knowledge in the subjects, experts can assist to determine the importance comparison within and between the factors.
關鍵字(中) ★ 選址
★ 再生能源
★ 屋頂型太陽能板
★ 多準則決策(MCDM)
★ 層級分析法(AHP)
關鍵字(英) ★ Site selection
★ renewable energy
★ sustainable development
★ rooftop solar PV
★ multi-criteria decision making (MCDM)
★ analytical hierarchical process (AHP),
論文目次 摘要 i
Abstract ii
Table of Contents iii
List of Figures v
List of Tables vi
List of Abbreviations vii
CHAPTER 1. INTRODUCTION 1
1.1 Research Motivation 2
1.2 Research Objective 3
1.3 Research Framework 3
CHAPTER 2. GLOBAL WARMING, SOLAR INDUSTRY, AND RELATED LITERATURE 5
2.1 Global Warming & Renewable Energy 5
2.1.1 Global Warming 5
2.1.2 Renewable Energy 9
2.2 Solar Energy 11
2.2.1 Significance of Solar Energy 11
2.2.2 Current status in different countries 15
2.3 Multi-criteria decision making in renewable energy. 17
2.4 Analytic Hierarchy Process 18
2.4.1 Pairwise Comparison 19
2.4.2 Determining the Priorities 20
2.4.3 Consistency of the preference 20
2.4.4 Model Synthesis 21
2.5 Criteria for solar project site selection 22
CHAPTER 3. PROBLEM DEFINITION AND RESEARCH METHODOLOGY 24
3.1 Vietnam scenario 24
3.2 Problem definition 26
3.3 Propose methodology 27
3.4 Data collection 27
3.5 BPMSG AHP Spreadsheet Template 28
3.5.1 Introduce BPMSG AHP Spreadsheet Template Tools 28
3.5.2 Implementing BPMSG AHP Spreadsheet Template 29
CHAPTER 4: CASE STUDY 32
4.1 General introduction 32
4.2 Results and discussion 33
4.2.1 AHP hierarchical structure 33
4.2.2 Data collection result 37
4.2.3 BPMSG AHP Spreadsheet Template result 37
CHAPTER 5: CONCLUSION AND FUTURE WORK RECOMMENDATION 43
5.1 Conclusion 43
5.2 Future Work 43
REFERENCES 45
Appendix A 54
參考文獻 1. Al Garni, H. Z., & Awasthi, A. (2018). Solar PV Power Plants Site Selection: A Review. In Advances in Renewable Energies and Power Technologies (pp. 57-75): Elsevier.
2. Al-Shamisi, M. H., Assi, A. H., & Hejase, H. A. (2013). Artificial neural networks for predicting global solar radiation in al ain city-UAE. International Journal of Green Energy, 10(5), 443-456.
3. Alonso, J. A., & Lamata, M. T. (2006). Consistency in the analytic hierarchy process: a new approach. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 14(04), 445-459.
4. Aydin, N. Y., Kentel, E., & Duzgun, H. S. (2013). GIS-based site selection methodology for hybrid renewable energy systems: A case study from western Turkey. Energy Conversion and Management, 70, 90-106.
5. Bozóki, S., FüLöP, J., & RóNyai, L. (2010). On optimal completion of incomplete pairwise comparison matrices. Mathematical and Computer Modelling, 52(1-2), 318-333.
6. BP (2018). BP statistical review of world energy 2018. Available from: https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf (accessed June 2018)
7. Cheng, A. A. (2000). The melancholy of race: Psychoanalysis, assimilation, and hidden grief. Oxford University Press.
8. Cheng, E. W., & Li, H. (2002). Construction partnering process and associated critical success factors: quantitative investigation. Journal of Management in Engineering, 18(4), 194-202.
9. Crawford, G., & Williams, C. (1985). A note on the analysis of subjective judgment matrices. Journal of Mathematical Psychology, 29(4), 387-405.
10. Csató, L. (2018). Characterization of the row geometric mean ranking with a group consensus axiom. Group Decision and Negotiation, 27(6), 1011-1027.
11. De Graan, J. G. (1980). Extentions to the Multiple Criteria Analysis Method of TL Saaty. National Institute for Water Supply, 80
12. Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50(1), 14-34.
13. Dincer, I., & Cengel, Y. A. (2001). Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy, 3(3), 116-149.
14. Doljak, D., & Stanojević, G. (2017). Evaluation of natural conditions for site selection of ground-mounted photovoltaic power plants in Serbia. Energy, 127, 291-300.
15. Elliott, J. A. (2012). An introduction to sustainable development. Routledge.
16. Effat, H. A. (2013). Selection of potential sites for solar energy farms in Ismailia Governorate, Egypt using SRTM and multicriteria analysis. International Journal of Advanced Remote Sensing and GIS, 2(1), pp. 205-220.
17. FS-UNEP Centre & BNEF (Frankfurt School-UNEP Collaborating Centre, and Bloomberg New Energy Finance) (2018). Global Trends in Renewable Energy Investment 2018. Available from http://www.greengrowthknowledge.org/resource/global-trends-renewable-energy-investment-report-2018 (accessed 2018-July)
18. GISTEMP Team (2018). GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space Studies. Available from: https://data.giss.nasa.gov/gistemp/.
19. Goepel, K. D. (2013, June). Implementing the analytic hierarchy process as a standard method for multi-criteria decision making in corporate enterprises–a new AHP excel template with multiple inputs. In Proceedings of The International Symposium on The Analytic Hierarchy Process(Vol. 2013, pp. 1-10). Creative Decisions Foundation Kuala Lumpur.
20. Gómez, M., López, A., & Jurado, F. (2010). Optimal placement and sizing from standpoint of the investor of photovoltaics grid-connected systems using binary particle swarm optimization. Applied Energy, 87(6), 1911-1918.
21. Harrison, S. R., & Qureshi, M. E. (2000, February). Choice of stakeholder groups and members in multicriteria decision models. In Natural Resources Forum (Vol. 24, No. 1, pp. 11-19). Oxford, UK: Blackwell Publishing Ltd.
22. IEA (2007). World Energy Outlook 2007. Available from https://www.iea.org/publications/freepublications/publication/WEO_2007.pdf
23. IEA (2009). CO2 Indicators Vol 2009 release 01. Available from: https://www.iea.org/publications/freepublications/publication/weo2009.pdf (accessed July 2018)
24. IEA PVPS (2018). Snapshot of Global Photovoltaic Markets 2018. Available from http://www.iea-pvps.org/fileadmin/dam/public/report/statistics/IEA-PVPS_-_A_Snapshot_of_Global_PV_-_1992-2017.pdf (accessed July 2018).
25. IPCC (2014a). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. Available from https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf (accessed October 2018)
26. IPCC (2014b ). Climate change 2014: Mitigation of climate change (Vol. 3). Intergovernmental Panel on Climate Change(IPCC). Cambridge University Press. Available from https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_full.pdf (accessed October 2018)
27. IRENA (2016), Renewable Energy in Cities, International Renewable Energy Agency (IRENA), Abu Dhabi, Available from https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2016/IRENA_Renewable_Energy_in_Cities_2016.pdf (accessed July 2018)
28. IRENA (2017). IRENA Cost and Competitiveness Indicators: Rooftop Solar PV, International Renewable Energy Agency, Abu Dhabi. Available from http://www.irena.org/publications/2017/Dec/IRENA-cost-and-competitiveness-indicators-Rooftop-solar-PV (accessed July 2018).
29. Ishizaka, A., & Labib, A. (2011). Review of the main developments in the analytic hierarchy process. Expert Systems with Applications, 38(11), 14336-14345.
30. Jun, D., Tian-tian, F., Yi-sheng, Y., & Yu, M. (2014). Macro-site selection of wind/solar hybrid power station based on ELECTRE-II. Renewable and Sustainable Energy Reviews, 35, 194-204.
31. Lee, A. H., Kang, H.-Y., Lin, C.-Y., & Shen, K.-C. (2015). An integrated decision-making model for the location of a PV solar plant. Sustainability, 7(10), 13522-13541.
32. Lee, A. H., Kang, H. Y., & Liou, Y. J. (2017). A hybrid multiple-criteria decision-making approach for photovoltaic solar plant location selection. Sustainability, 9(2), 184.
33. Lindfors, A. V., Kouremeti, N., Arola, A., Kazadzis, S., Bais, A. F., & Laaksonen, A. (2013). Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation) at Thessaloniki, Greece. Atmospheric Chemistry and Physics, 13(7), 3733-3741.
34. Liu, J., Xu, F., & Lin, S. (2017). Site selection of photovoltaic power plants in a value chain based on grey cumulative prospect theory for sustainability: A case study in Northwest China. Journal of Cleaner Production, 148, 386-397.
35. Mateo, J. R. S. C. (2012). Multi criteria analysis in the renewable energy industry. Springer Science & Business Media.
36. Noorollahi, E., Fadai, D., Akbarpour Shirazi, M., & Ghodsipour, S. H. (2016). Land suitability analysis for solar farms exploitation using GIS and fuzzy analytic hierarchy process (FAHP)—a case study of Iran. Energies, 9(8), 643.
37. Noorollahi, E., Fadai, D., Ghodsipour, S. H., & Shirazi, M. A. (2017). Developing a new optimization framework for power generation expansion planning with the inclusion of renewable energy—A case study of Iran. Journal of Renewable and Sustainable Energy, 9(1), 015901.
38. Özbayrak, Ö., Uyulgan, M. A., Alpat, Ş., Alpat, S. K., & Kartal, M. (2011). A research on high school students’ knowledge related to global warming. Buca Eğitim Fakültesi Dergisi, 29, 58-67.
39. Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: a review. Renewable and Sustainable Energy Reviews, 15(3), 1513-1524.
40. Pohekar, S. D., & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning—a review. Renewable and Sustainable Energy Reviews, 8(4), 365-381.
41. Rabinowitz, S. G. (1976). Measurement and comparison of the proliferative and antibody responses of neonatal, immature and adult murine spleen cells to T-dependent and T-independent antigens. Cellular Immunology, 21(2), 201-216.
42. Radziemska, E. (2003). The effect of temperature on the power drop in crystalline silicon solar cells. Renewable Energy, 28(1), 1-12.
43. Randalls, S. (2010). History of the 2 C climate target. Wiley Interdisciplinary Reviews: Climate Change, 1(4), 598-605.
44. Rao, R. V. (2007). Decision making in the manufacturing environment: using graph theory and fuzzy multiple attribute decision making methods. Springer Science & Business Media.
45. REN21 (2018). Renewables 2018 Global Status Report. Available from http://www.ren21.net/wp-content/uploads/2018/06/17-8652_GSR2018_FullReport_web_final_.pdf (accessed July 2018)
46. Saaty, T. L. (1980). The analytical hierarchy process, planning, priority. Resource Allocation. RWS Publications, USA.
47. Saaty, T. L. (2003). Decision-making with the AHP: Why is the principal eigenvector necessary. European Journal of Operational Research, 145(1), 85-91.
48. Sabo, M. L., Mariun, N., Hizam, H., Radzi, M. A. M., & Zakaria, A. (2017). Spatial matching of large-scale grid-connected photovoltaic power generation with utility demand in Peninsular Malaysia. Applied Energy, 191, 663-688.
49. Sánchez-Lozano, J. M., Teruel-Solano, J., Soto-Elvira, P. L., & García-Cascales, M. S. (2013). Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain. Renewable and Sustainable Energy Reviews, 24, 544-556.
50. Sánchez-Lozano, J. M., Antunes, C. H., García-Cascales, M. S., & Dias, L. C. (2014). GIS-based photovoltaic solar farms site selection using ELECTRE-TRI: Evaluating the case for Torre Pacheco, Murcia, Southeast of Spain. Renewable Energy, 66, 478-494.
51. Sindhu, S., Nehra, V., & Luthra, S. (2017). Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: Case study of India. Renewable and Sustainable Energy Reviews, 73, 496-511.
52. Solar-Philippines (2013) Grid-tied and off-grid rooftop PV systems for residential, commercial and industrial installations. (n.d.), Available from http://www.solar-philippines.com/services/grid-tied-and-off-grid-rooftop-pv-systems-for-residential-commercial-and-industrial-installations/ (accessed September 2018)
53. Suh, J., & Brownson, J. R. (2016). Solar farm suitability using geographic information system fuzzy sets and analytic hierarchy processes: case study of Ulleung Island, Korea. Energies, 9(8), 648.
54. Tahri, M., Hakdaoui, M., & Maanan, M. (2015). The evaluation of solar farm locations applying Geographic Information System and Multi-Criteria Decision-Making methods: Case study in southern Morocco. Renewable and Sustainable Energy Reviews, 51, 1354-1362.
55. Trinh, Q.D. (2009). Photovoltaic technology and solar energy development in Viet Nam. Renewable Energy Technology. Available from: http://techmonitor.net/tm/images/6/63/09nov_dec_sf3.pdf (accessed August 2018)
56. Tsoutsos, T., Frantzeskaki, N., & Gekas, V. (2005). Environmental impacts from the solar energy technologies. Energy Policy, 33(3), 289-296.
57. UNFCCC (2015). Adoption of the Paris Agreement. Report No. FCCC/CP/2015/L.9/Rev.1, Available from: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed July 2018)
58. Uyan, M. (2013). GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey. Renewable and Sustainable Energy Reviews, 28, 11-17.
59. Vafaeipour, M., Zolfani, S. H., Varzandeh, M. H. M., Derakhti, A., & Eshkalag, M. K. (2014). Assessment of regions priority for implementation of solar projects in Iran: New application of a hybrid multi-criteria decision making approach. Energy Conversion and Management, 86, 653-663.
60. Wang, J. J., Jing, Y. Y., Zhang, C. F., & Zhao, J. H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9), 2263-2278.
61. Wang, C. N., Nguyen, V., Thai, H., & Duong, D. (2018). Multi-criteria decision making (MCDM) approaches for solar power plant location selection in viet nam. Energies, 11(6), 1504.
62. Watson, J. J., & Hudson, M. D. (2015). Regional Scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landscape and Urban Planning, 138, 20-31.
63. Williams, C., & Crawford, G. (1980). Analysis of Subjective Judgment Matrices (No. RAND/R-2572-AF). RAND CORP SANTA MONICA CA.
64. Wong, J. K., & Li, H. (2008). Application of the analytic hierarchy process (AHP) in multi-criteria analysis of the selection of intelligent building systems. Building and Environment, 43(1), 108-125.
65. World Bank Group (2017). Vietnam - Solar irradiation and PV power potential maps. Available from: http://globalsolaratlas.info/downloads/vietnam (accessed August 2018)
66. Wu,Y., Yi-sheng, Y., Tian-tian, F., Li-na, K., Wei, L., & Luo-jie, F. (2013). Macro-site selection of wind/solar hybrid power station based on Ideal Matter-Element Model. International Journal of Electrical Power & Energy Systems, 50, 76-84.
67. Wu, Y., & Geng, S. (2014). Multi-criteria decision making on selection of solar–wind hybrid power station location: a case of China. Energy Conversion and Management, 81, 527-533.
指導教授 王啟泰(Chi-Tai Wang) 審核日期 2019-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明