博碩士論文 105426024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.145.164.47
姓名 楊憶川(Yi-Chuan Yang)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 彈性製造系統下具單向路徑軌道的梯形機器佈置研究
(The Research of Ladder Layout with Unidirectional Flow Path in the Flexible Manufacturing System)
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 設施規劃對於工廠的產能與績效有高度的影響,在工廠中可被視為一種策略。在實務當中,彈性製造系統設施佈置相當常見,相較於線性佈置或單一封閉迴圈佈置,梯形佈置之彈性較佳,同時也較開放式佈置容易規劃,因此本研究希望針對梯形佈置建立一套系統化之設計方式,以期有效利用此佈置形式之優勢,達到更有效率之設施佈置規劃。
本研究延續溫奕雲(2009)的「彈性製造系統環境中單向物料路徑梯式設施佈置設計」之研究。研究目的在於建立一套有系統的單向軌道梯式佈置設計方法,提供彈性製造系統環境在物料流動方向有所限制的情況下,建立有規劃的梯型機器佈置,降低物料處理成本,同時維持機器工作時的平衡。
本研究可分為四個方法:(1)機器排序問題:根據機器之間的流量關係,利用流線分析法(FLA,Flow Line Analysis Method)找出機器相對位置(2)禁忌搜尋法(Tabu Search):改善排列完之初始流線與流量距離;(3)建立梯形佈置(4)建立數學規劃模型:以數學規劃模型找出機器的最佳擺放位置,建構限制式確保求出的可行解是否滿足所有環境佈置之條件。根據此四個方法,發展出兩種不同的研究方法流程,並利用機器數量的多寡配置出兩種實驗環境,互相搭配進行實驗。最後,將實驗結果的結果進行分析與比較,達到機器間總流量距離最小化之目標。
摘要(英) In the past, most of the research in facility layout was focus on the closed-loop layout and linear layout. There was few study focus on “ladder layout,” even it is also one of the popular layout types in flexible manufacturing system. Therefore, a systematical procedure of building up the ladder layout is proposed in this study, to improve efficient of facility layout.
This study continues the research of “The Design Methodology of Ladder Layout with Unidirectional Flow Path in the Flexible Manufacturing System” by Wen(2009). The purpose is building up the unidirectional ladder layout systematically. Based on the direction of material flow have been restricted, the flexible manufacturing system will set up the ladder layout to reduce the material handling cost and balance the machine time.
This paper can be divided into four method: (1) Machine sequencing problem: the Flow Line Analysis Method is used to find the relative position of the machine. (2) Tabu Search (3) Establish the ladder layout. (4) Set up a mathematical model.According to the four method, two different research methods flows are developed, and two different experimental environments are configured by using the number of machines, and experiments are carried out with each other. Finally, the experimental results are compared with the results to achieve the goal of minimizing the total flow distance between machines.
關鍵字(中) ★ 設施規劃
★ 彈性製造系統
★ 梯形機器佈置
★ 流線分析法
關鍵字(英) ★ facility layout
★ flexible manufacturing system
★ ladder layout
★ flow line analysis
論文目次 目錄
摘要 ............................................................................................................................................. i
Abstract....................................................................................................................................... ii
目錄 ...........................................................................................................................................iii
圖目錄 ........................................................................................................................................ v
表目錄 ....................................................................................................................................... vi
第一章 緒論..............................................................................................................................1
1.1 研究背景與動機.....................................................................................................1
1.2 研究目的.....................................................................................................................4
1.3 研究環境與假設.........................................................................................................4
1.4 研究架構與流程.........................................................................................................5
第二章 文獻探討.................................................................................................................6
2.1 設施規劃的方法演進.................................................................................................7
2.1.1 傳統圖解法......................................................................................................8
2.1.2 系統化圖解法..................................................................................................8
2.1.3 數學規劃模式..................................................................................................9
2.1.4 啟發式演算法................................................................................................10
2.1.5 禁忌搜尋法....................................................................................................14
2.2 彈性製造系統之機器佈置.......................................................................................16
2.2.1 機器佈置型態分類........................................................................................16
2.2.2 機器佈置相關文獻探討................................................................................20
第三章 研究方法....................................................................................................................23
3.1 方法架構與流程.......................................................................................................23
3.2 流線分析法...............................................................................................................27 3.2.1 流線分析法─Method 6 .................................................................................. 28
3.3 禁忌搜尋法...............................................................................................................32 3.4 建立梯式佈置...........................................................................................................34 3.5 數學規劃模型...........................................................................................................37 3.5.1 數學規劃模型範例 ......................................................................................... 46
第四章 實驗設計與分析........................................................................................................49
4.1 實驗環境與假設.......................................................................................................49
4.2 統計分析結果...........................................................................................................52
4.2.1 ANOVA 之前提假設分析 ........................................................................... 52
4.2.2 改善前初始結果之統計分析........................................................................52
4.2.2.1 第一種實驗環境─36台機器.............................................................52
4.2.2.2 第二種實驗環境─18台機器.............................................................54
4.2.2.3 整體實驗環境.....................................................................................56
4.2.2.4 改善前初始結果之統計分析小結.....................................................58
4.2.3 改善後結果之統計分析................................................................................59
4.2.3.1 第一種實驗環境─36台機器.............................................................59
4.2.3.2 第二種實驗環境─18台機器.............................................................61
4.2.3.3 整體實驗環境.....................................................................................62
4.2.3.4 改善後結果之統計分析小結.............................................................67
4.2.4 改善比率之統計分析....................................................................................68
4.2.4.1 第一種實驗環境─36台機器.............................................................68
4.2.4.2 第二種實驗環境─18台機器.............................................................70
4.2.4.3 整體實驗環境.....................................................................................72
4.2.4.4 改善比率之統計分析小結.................................................................74
4.2.5 實驗運行時間................................................................................................75
4.3 實驗步驟計算範例...................................................................................................76
4.3.1 初始流線計算................................................................................................76
4.3.2 方法一實驗....................................................................................................80
4.3.2.1 梯形佈置排列.....................................................................................80
4.3.2.2 數學規劃模型.....................................................................................82
4.3.2.3 禁忌搜尋法改善.................................................................................84
4.3.3 方法二實驗....................................................................................................89
4.3.3.1 禁忌搜尋法改善.................................................................................89
4.3.3.2 梯形佈置排列.....................................................................................93
4.3.3.3 數學規劃模型.....................................................................................95
第五章 結論與建議................................................................................................................98 5.1 結論...........................................................................................................................98
5.2 未來研究建議...........................................................................................................99
參考文獻 ................................................................................................................................ 100
附錄 ........................................................................................................................................ 110
參考文獻 1. 朱孝紋. (2008). 應用禁忌搜尋演算法求解越野競賽問題之研究. 義守大學工業工程與管理研究所學位論文, 1-97.
2. 洪偉益. (2014). 運用多屬性式派工法則於彈性製造系統之研究. 臺北科技大學工業工程與管理研究所學位論文, 1-101.
3. 溫奕雲. (2009). 彈性製造系統環境中單向物料路徑梯式設施佈置設計. 中央大學工業管理研究所碩士論文, 1-91.
4. Abdou, G., & Dutta, S. P. (1990). An integrated approach to facilities layout using expert systems. International Journal of Production Research, 28(4), 685-708.
5. Arnaout, J. P., ElKhoury, C., & Karayaz, G. (2017). Solving the multiple level warehouse layout problem using ant colony optimization. Operational Research, 1-18.
6. Abdinnour-Helm, S., & Hadley, S. W. (2000). Tabu search based heuristics for multi-floor facility layout. International Journal of Production Research, 38(2), 365-383.
7. Bullnheimer, B., Hartl, R. F., & Strauss, C. (1997). A new rank based version of the Ant System. A computational study.
8. Bock, S., & Hoberg, K. (2007). Detailed layout planning for irregularly-shaped machines with transportation path design. European Journal of Operational Research, 177(2), 693-718.
9. Bozer, Y. A., & Meller, R. D. (1997). A reexamination of the distance-based facility layout problem. IIE transactions, 29(7), 549-560.
10. Banerjee, P., & Zhou, Y. (1995). Facilities layout design optimization with single loop
material flow path configuration. International Journal of Production Research, 33(1), 183-203.
11. Bozer, Y. A., Meller, R. D., & Erlebacher, S. J. (1994). An improvement-type layout algorithm for single and multiple-floor facilities. Management Science, 40(7), 918-932.
12. Catoni, O. (1998). Solving scheduling problems by simulated annealing. SIAM Journal on Control and Optimization, 36(5), 1539-1575.
13. Chiang, W. C., & Kouvelis, P. (1996). An improved tabu search heuristic for solving facility layout design problems. International Journal of Production Research, 34(9), 2565-2585.
14. Chiang, W. C., & Chiang, C. (1998). Intelligent local search strategies for solving facility layout problems with the quadratic assignment problem formulation. European Journal of Operational Research, 106(2-3), 457-488.
15. Chen, D. S., Wang, Q., & Chen, H. C. (2001). Linear sequencing for machine layouts by a modified simulated annealing. International Journal of Production Research, 39(8), 1721-1732.
16. Chen, C. F., Egbelu, P. J., & Wu, C. T. (1994). Production planning models for a central factory with multiple satellite factories. International Journal of Production Research, 32(6), 1431-1450.
17. Chae, J., & Peters, B. A. (2006). A simulated annealing algorithm based on a closed loop layout for facility layout design in flexible manufacturing systems. International Journal of Production Research, 44(13), 2561-2572.
18. Chae, J., & Peters, B. A. (2006). Layout design of multi-bay facilities with limited bay flexibility. Journal of manufacturing systems, 25(1), 1.
19. Chae, J., & Peters, B. A. (2006). A simulated annealing algorithm based on a closed loop layout for facility layout design in flexible manufacturing systems. International Journal of Production Research, 44(13), 2561-2572.
20. Chaudhuri, B. B., & Sarkar, N. (1995). Texture segmentation using fractal dimension. IEEE transactions on pattern analysis and machine intelligence, 17(1), 72-77.
21. Cimikowski, R., & Mooney, E. (1997). Proximity-based adjacency determination for facility layout. Computers & industrial engineering, 32(2), 341-349.
22. Cimikowski, R., & Mooney, E. (1995). Heuristics for a new model of facility layout. Computers & Industrial Engineering, 29(1), 273-277.
23. Colorni, A., Dorigo, M., Maniezzo, V., & Trubian, M. (1994). Ant system for job-shop scheduling. Belgian Journal of Operations Research, Statistics and Computer Science, 34(1), 39-53.
24. Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on evolutionary computation, 1(1), 53-66.
25. Dorigo, M., Maniezzo, V., & Colorni, A. (1991). The ant system: An autocatalytic optimizing process.
26. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), 29-41.
27. Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). Ant algorithms for discrete optimization. Artificial life, 5(2), 137-172.
28. Drinkwater, C. C., Evans, B. A., & Richards, R. I. (1987). Mouse glandular kallikrein genes: identification and characterization of the genes encoding the epidermal growth factor binding proteins. Biochemistry, 26(21), 6750-6756.
29. Deb, S. K., & Bhattacharyya, B. (2005). Fuzzy decision support system for manufacturing facilities layout planning. Decision Support Systems, 40(2), 305-314.
30. Das, S. K. (1993). A facility layout method for flexible manufacturing systems∗. International Journal of Production Research, 31(2), 279-297.
31. El-Rayah, T. E., & Hollier, R. H. (1970). A review of plant design techniques. International Journal of Production Research, 8(3), 263-279.
32. Goetschalckx, M. (1992). An interactive layout heuristic based on hexagonal adjacency graphs. European Journal of Operational Research, 63(2), 304-321.
33. Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision Sciences, 8(1), 156-166.
34. Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine learning, 3(2), 95-99.
35. Ho, Y. C., & Moodie, C. L. (2000). A hybrid approach for concurrent layout design of cells and their flow paths in a tree configuration. International Journal of Production Research, 38(4), 895-928.
36. Hamzeei, M., Farahani, R. Z., & Rashidi-Bejgan, H. (2013). An exact and a simulated annealing algorithm for simultaneously determining flow path and the location of P/D stations in bidirectional path. Journal of Manufacturing Systems, 32(4), 648-654.
37. Hassan, M. M., Hogg, G. L., & Smith, D. R. (1986). SHAPE: a construction algorithm for area placement evaluation. International Journal of Production Research, 24(5), 1283-1295.
38. Harhalakis, G., Lu, T., Minis, I., & Nagi, R. (1996). A practical method for design of hybrid-type production facilities. International Journal of Production Research, 34(4), 897-918.
39. HASSAN, M. M., & Hogg, G. L. (1991). On constructing a block layout by graph theory. International Journal of Production Research, 29(6), 1263-1278.
40. Henn, S., & Wäscher, G. (2012). Tabu search heuristics for the order batching problem in manual order picking systems. European Journal of Operational Research, 222(3), 484-494.
41. Holland, J. H. (1975). Adaptation in natural and artificial systems. An introductory analysis with application to biology, control, and artificial intelligence. Ann Arbor, MI: University of Michigan Press.
42. Ho, Y. C., Lee, C. E. C., & Moodie, C. L. (1993). Two sequence-pattern, matching-based, flow analysis methods for multi-flowlines layout design. International Journal of Production Research, 31(7), 1557-1578.
43. Ho, Y. C., & Liu, C. F. (2005). A design methodology for converting a regular warehouse into a zone-picking warehouse. Journal of the Chinese Institute of Industrial Engineers, 22(4), 332-345.
44. Hanan, M., & Kurtzberg, J. M. (1972). A review of the placement and quadratic assignment problems. Siam Review, 14(2), 324-342.
45. Heragu, S. S., & Kusiak, A. (1988). Machine layout problem in flexible manufacturing systems. Operations research, 36(2), 258-268.
46. Ho, Y. C., & Moodie, C. L. (1998). Machine layout with a linear single-row flow path in an automated manufacturing system. Journal of manufacturing systems, 17(1), 1-22.
47. Irvine, S. A., & Rinsma-Melchert, I. (1997). A new approach to the block layout problem. International Journal of Production Research, 35(8), 2359-2376.
48. Kusiak, A., & Heragu, S. S. (1987). The facility layout problem. European Journal of operational research, 29(3), 229-251.
49. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680.
50. Kouvelis, P., Kurawarwala, A. A., & Gutierrez, G. J. (1992). Algorithms for robust single and multiple period layout planning for manufacturing systems. European journal of operational research, 63(2), 287-303.
51. Kouvelis, P., & Chiang, W. C. (1992). A simulated annealing procedure for single row layout problems in flexible manufacturing systems. International Journal of Production Research, 30(4), 717-732.
52. Kouvelis, P., & Chiang, W. C. (1992). A simulated annealing procedure for single row layout problems in flexible manufacturing systems. International Journal of Production Research, 30(4), 717-732.
53. Kouvelis, P., Chiang, W. C., & Yu, G. (1995). Optimal algorithms for row layout problems in automated manufacturing systems. IIE transactions, 27(1), 99-104.
54. Kochhar, J., & Heragu, S. S. (1999). Facility layout design in a changing environment. International Journal of Production Research, 37(11), 2429-2446.
55. Kim, C. B., Foote, B. L., & Pulat, P. S. (1995). Cut-tree construction for facility layout. Computers & industrial engineering, 28(4), 721-730.
56. Larrañaga, P., & Lozano, J. A. (Eds.). (2001). Estimation of distribution algorithms: A
new tool for evolutionary computation (Vol. 2). Springer Science & Business Media.
57. Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Computer methods in applied mechanics and engineering, 194(36), 3902-3933.
58. Lin, Y. Z., & Lin, Y. C. (2015). Applying an immune ant colony system algorithm to solve an integrated flexible bay facility layout problem with input/output points design. Lecture Notes in Management Science, 7, 57.
59. Lin, L. C. (1995). An integrated framework for plant layout evaluation Doctoral dissertation, Georgia Institute of Technology).
60. Liang, L. Y., & Chao, W. C. (2008). The strategies of tabu search technique for facility layout optimization. Automation in Construction, 17(6), 657-669.
61. Malakooti, B., & Tsurushima, A. (1989). An expert system using priorities for solving multiple-criteria facility layout problems. International Journal of Production Research, 27(5), 793-808.
62. Myeroff, L. L., Parsons, R., Kim, S. J., Hedrick, L., Cho, K. R., Orth, K., ... & Bang, Y. J. (1995). A transforming growth factor β receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Research, 55(23), 5545-5547.
63. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The journal of chemical physics, 21(6), 1087-1092.
64. Meller, R. D., Narayanan, V., & Vance, P. H. (1998). Optimal facility layout design. Operations Research Letters, 23(3), 117-127.
65. Meller, R. D., & Bozer, Y. A. (1996). A new simulated annealing algorithm for the facility layout problem. International Journal of Production Research, 34(6), 1675-1692.
66. Malek, M., Guruswamy, M., Pandya, M., & Owens, H. (1989). Serial and parallel simulated annealing and tabu search algorithms for the traveling salesman problem. Annals of Operations Research, 21(1), 59-84.
67. Ponnambalam, S. G., & Ramkumar, V. (2001). A genetic algorithm for the design of a single-row layout in automated manufacturing systems. The International Journal of Advanced Manufacturing Technology, 18(7), 512-519.
68. Ponnambalam, S. G., Ramkumar, V., & Jawahar, N. (2001). A multiobjective genetic algorithm for job shop scheduling. Production planning & control, 12(8), 764-774.
69. Ponnambalam, S. G., & Ramkumar, V. (2001). A genetic algorithm for the design of a single-row layout in automated manufacturing systems. The International Journal of Advanced Manufacturing Technology, 18(7), 512-519.
70. Rosenblatt, M. J. (1986). The dynamics of plant layout. Management Science, 32(1), 76-86.
71. Rao, A. M., Hatcher, J. F., & Dempsey, R. J. (1999). CDP-choline: neuroprotection in transient forebrain ischemia of gerbils. Journal of neuroscience research, 58(5), 697-705.
72. Rajasekharan, M., Peters, B. A., & Yang, T. (1998). A genetic algorithm for facility layout design in flexible manufacturing systems. International Journal of Production Research, 36(1), 95-110.
73. Suman, B., & Kumar, P. (2006). A survey of simulated annealing as a tool for single and multiobjective optimization. Journal of the operational research society, 57(10), 1143-1160.
74. Solimanpur, M., & Kamran, M. A. (2010). Solving facilities location problem in the presence of alternative processing routes using a genetic algorithm. Computers & Industrial Engineering, 59(4), 830-839.
75. Solimanpur, M., Vrat, P., & Shankar, R. (2005). An ant algorithm for the single row layout problem in flexible manufacturing systems. Computers & Operations Research, 32(3), 583-598.
76. Solimanpur, M., & Jafari, A. (2008). Optimal solution for the two-dimensional facility layout problem using a branch-and-bound algorithm. Computers & Industrial Engineering, 55(3), 606-619.
77. Şahin, R., Ertoğral, K., & Türkbey, O. (2010). A simulated annealing heuristic for the dynamic layout problem with budget constraint. Computers & Industrial Engineering, 59(2), 308-313.
78. Souilah, A. (1995). Simulated annealing for manufacturing systems layout design. European Journal of Operational Research, 82(3), 592-614.
79. Sofianopoulou, S. (1992). Simulated annealing applied to the process allocation problem. European Journal of Operational Research, 60(3), 327-334.
80. Sahni, S., & Gonzalez, T. (1976). P-complete approximation problems. Journal of the ACM (JACM), 23(3), 555-565.
81. Samarghandi, H., & Eshghi, K. (2010). An efficient tabu algorithm for the single row facility layout problem.European Journal of Operational Research,205(1), 98-105.
82. Tompkins, J. A., & Reed Jr, R. U. D. D. E. L. L. (1976). An applied model for the facilities design problem. International Journal of Production Research, 14(5), 583-595.
83. Twohig, S. N., & Aletan, S. O. (1990, January). The traveling-salesman problem. In Proceedings of the 1990 ACM annual conference on Cooperation (p. 437). ACM.
84. Tompkins, J. A., & Reed Jr, R. U. D. D. E. L. L. (1976). An applied model for the facilities design problem. International Journal of Production Research, 14(5), 583-595.
85. Vollmann, T. E., & Buffa, E. S. (1966). The facilities layout problem in perspective. Management Science, 12(10), B-450.
86. Welgama, P. S., & Gibson, P. R. (1993). A construction algorithm for the machine layout
problem with fixed pick-up and drop-off points. International Journal of Production Research, 31(11), 2575-2589.
87. Wascher, G., & Merker, J. (1997). A comparative evaluation of heuristics forthe
adjacency problem in facility layout planning. International Journal of Production Research, 35(2), 447-466.
88. Wu, T. H., Chang, C. C., & Chung, S. H. (2008). A simulated annealing algorithm for manufacturing cell formation problems. Expert Systems with Applications, 34(3), 1609-1617.
89. Wang, J., & Deng, Y. (1999). Incremental modeling and verification of flexible manufacturing systems. Journal of Intelligent Manufacturing, 10(6), 485-502.
90. Xie, W., Deng, Z., Ding, B., & Kuang, H. (2015). Fixture layout optimization in multi-station assembly processes using augmented ant colony algorithm. Journal of Manufacturing Systems, 37, 277-289.
91. Yang, T., Su, C. T., & Hsu, Y. R. (2000). Systematic layout planning: a study on semiconductor wafer fabrication facilities. International Journal of Operations & Production Management, 20(11), 1359-1371.
92. Yang, T., & Kuo, C. (2003). A hierarchical AHP/DEA methodology for the facilities layout design problem. European Journal of Operational Research, 147(1), 128-136.
93. Zhao, T., & Tseng, C. L. (2007). Flexible facility interior layout: a real options approach. Journal of the Operational Research Society, 58(6), 729-739.
指導教授 何應欽(Ying-Chin Ho) 審核日期 2019-3-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明