參考文獻 |
[1] Madasamy, P., Jander, D., Brooks, C., Loftus, T., Thomas, A., Jones, P. and Honea, E. (2009), “Dual-Grating Spectral Beam Combination of High-Power Fiber Lasers”, IEEE Journal of Selected Topics in Quantum Electronics, 15(2), pp.337-343.
[2] Zhao, Y., Sun, F., Tong, C., Shu, S., Hou, G., Lu, H., Zhang, X., Wang, L., Tian, S. and Wang, L. (2018), “Going beyond the beam quality limit of spectral beam combining of diode lasers in a V-shaped external cavity”, Optics Express, 26(11), p.14058.
[3] Chen, F., Ma, J., Wei, C., Zhu, R., Zhou, W., Yuan, Q., Pan, S., Zhang, J., Wen, Y. and Dou, J. (2017), “10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters”, Optics Express, 25(26), p.32783.
[4] Chen, F., Ma, J., Zhu, R., Yuan, Q., Zhou, W., Su, J., Xu, J. and Pan, S. (2017), “Coupling efficiency model for spectral beam combining of high-power fiber lasers calculated from spectrum”, Applied Optics, 56(10), p.2574.
[5] Loftus, T., Thomas, A., Hoffman, P., Norsen, M., Royse, R., Liu, A. and Honea, E. (2007), “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications”, IEEE Journal of Selected Topics in Quantum Electronics, 13(3), pp.487-497.
[6] Hu, M., Zheng, Y., Yang, Y., Chen, X., Liu, K., Zhao, C., Wang, J., Qi, Y., He, B. and Zhou, J. (2017), “Nanosecond double-pulse fiber laser with arbitrary sub-pulse combined based on a spectral beam combining system”, Optics & Laser Technology, 90, pp.22-26.
[7] Zhang, Y. and Zhang, B. (2010), “Analysis of beam quality for the laser beams after spectral beam combining”, Optik, 121(13), pp.1236-1242.
[8] Rui Zhang, R., Yufei Wang, Y., Yejin Zhang, Y., Zhigang Feng, Z., Fan Qi, F., Lei Liu, L. and Wanhua Zheng, W. (2014), “Broadband and polarization-insensitive subwavelength grating reflector for the near-infrared region”, Chinese Optics Letters, 12(2), pp.20502-20504.
[9] Mehrotra, K., Taylor, B., Kozlov, A., Papernov, S. and Lambropoulos, J. (2017), “Nano-indentation and laser-induced damage testing in optical multilayer-dielectric gratings”, Applied Optics, 56(9), p.2494.
[10] Guan, H., Jin, Y., Liu, S., Kong, F., Du, Y., He, K., Yi, K. and Shao, J. (2013), “Broadband trapeziform multilayer dielectric grating for femtosecond pulse compressor: design, fabrication, and analysis”, Laser Physics, 23(11), p.115301.
[11] Vial, B., Zolla, F., Nicolet, A., Commandré, M. and Tisserand, S. (2012), “Adaptive perfectly matched layer for Wood’s anomalies in diffraction gratings”, Optics Express, 20(27), p.28094.
[12] Bao, G., Chen, Z. and Wu, H. (2005), “Adaptive finite-element method for diffraction gratings”, Journal of the Optical Society of America A, 22(6), p.1106.
[13] Koechner, W. (2006), Solid-state laser engineering, chapter 01, Springer, New York.
[14] Bertolotti, M. (2005), The history of the laser, chapter 02, Bristol: Institute of Physics Pub.
[15] Witteman, W. (2013), CO2 laser, chapter 01, Springer-Verlag Berlin An.
[16] Shay, T., Baker, J., Sanchez, A., Robin, C., Vergien, C., Zeringue, C., Gallant, D., Lu, C., Pulford, B., Bronder, T. and Lucero, A. (2009), “High-power phase locking of a fiber amplifier array”, Fiber Lasers VI: Technology, Systems, and Applications, 7195, pp. 127-130.
[17] Bai, G., Shen, H., Yang, Y., Zhao, X., Zhang, J., Zhang, H., Qi, Y., He, B. and Zhou, J. (2018), “Theoretical analysis of beam quality degradation in spectral beam combining of fiber laser array with beam deviation”, Optics & Laser Technology, 105, pp.281-287.
[18] Yin, S., Zhang, B. and Dan, Y. (2011), “Propagation characteristics of the Yb-doped fiber lasers after spectral beam combining by the VBGs”, Optics Communications, 284(1), pp.306-311.
[19] Cho, H., Lee, K., Kim, S., Lee, J. and Kim, H. et al. (2018), “Analysis on Design and Fabrication of High-diffraction-efficiency Multilayer Dielectric Gratings”, Current Optics and Photonics, 2(2), pp.125-133.
[20] Li, H. and Wang, B. (2017), “Three-Layer Grating With the Enhanced Efficiency and Angular Bandwidth”, IEEE Photonics Journal, 9(1), pp.1-7.
[21] Zhan, S., Wu, Z., Hu, J., Zhang, J., Wang, P., You, J. and Wen, J. (2018), “Investigation on ultimate efficiency of spectral beam combining based on an external cavity”, Optik, 158, pp.1519-1532.
[22] Huang, H., Kong, F., Xia, Z., Jin, Y., Li, L. et al. (2018), “Femtosecond-laser-induced damage initiation mechanism on metal multilayer dielectric gratings for pulse compression”, Optical Materials, 75, pp.727-732.
[23] Cao, H., Wu, J., Yu, J. and Ma, J. (2018), “High-efficiency polarization-independent wideband multilayer dielectric reflective bullet-alike cross-section fused-silica beam combining grating”, Applied Optics, 57(4), pp.900-905.
[24] Li, L., Liu, Q., Chen, J., Wang, L., Jin, Y., Yang, Y. and Shao, J. (2018), “Polarization-independent broadband dielectric bilayer gratings for spectral beam combining system”, Optics communications, pp.97-103.
[25] Palmer, C. and Loewen, E. (2005), Diffraction grating handbook, chapter 02, N.Y.: Newport Corporation, Rochester.
[26] Loftus, T., Thomas, A., Hoffman, P., Norsen, M., Royse, R., Liu, A. and Honea, E. (2007), “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications”, IEEE Journal of Selected Topics in Quantum Electronics, 13(3), pp.487-497.
[27] Clausnitzer, T., Kämpfe, T., Kley, E., Tünnermann, A., Peschel, U., Tishchenko, A. and Parriaux, O. (2005), “An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings”, Optics Express, 13(26), p.10448.
[28] Clausnitzer, T., Kämpfe, T., Kley, E., Tünnermann, A., Tishchenko, A. and Parriaux, O. (2007), “Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting”, Applied Optics, 46(6), p.819.
[29] Liu, Z., Zheng, Y., Pan, F., Lin, Q., Ma, P. and Wang, J. (2016), “Investigation of laser induced damage threshold measurement with single-shot on thin films”, Applied Surface Science, 382, pp.294-301.
[30] Zhong, M., Yang, G., Yan, Z., Yang, L. and Xiang, X. (2016), “Effect of γ-ray irradiation on the optical property and laser damage performance of silica”, Optik, 127(8), pp.3853-3857.
[31] Boling, N., Crisp, M. and Dubé, G. (1973), “Laser Induced Surface Damage”, Applied Optics, 12(4), p.650.
[32] Gallais, L. and Commandré, M. (2013), “Laser-induced damage thresholds of bulk and coating optical materials at 1030 nm, 500 fs”, Applied Optics, 53(4), p.A186-188.
[33] Kong, F., Jin, Y., Huang, H., Zhang, H., Liu, S. and He, H. (2015), “Laser-induced damage of multilayer dielectric gratings with picosecond laser pulses under vacuum and air”, Optics & Laser Technology, 73, pp.39-43.
[34] Macleod, H. (2018), Thin-film optical filters, chapter 02-05, 5th ed, CRC Press, Taylor & Francis, pp.188-190.
[35] Jiang, X., Li, P., Lv, J. and Zheng, W. (2010), “An adaptive finite element PML method for the elastic wave scattering problem in periodic structures”, Numerical Analysis, 22 (5), pp 1846-1507.
[36] Solano, M., Faryad, M., Lakhtakia, A. and Monk, P. (2018), “Comparison of rigorous coupled-wave approach and finite element method for photovoltaic devices with periodically corrugated metallic backreflector”, Optical Society of America, 31(10), pp.2275-2284.
[37] Menzel, R. (2007), Photonics, chapter 02, Springer-Verlag Berlin Heidelberg, New York.
[38] Dickinson, E., Ekström, H. and Fontes, E. (2013), “COMSOL Multiphysics®: Finite element software for electrochemical analysis. A mini-review.”, Electrochemistry communications, 40, pp.71-74.
[39] Xu, C., Qiang, Y., Zhu, Y., Shao, J., Fan, Z. and Han, J. (2010), “Effects of deposition parameters on laser-induced damage threshold of Ta2O5 films”, Optics & Laser Technology, 42(3), pp.497-502.
[40] Sheng-bao, Z., Shang-hong, Z., Xing-chun, C., Zhuo-liang, W. and Lei, S. (2010), “Spectral beam combining of fiber lasers based on a transmitting volume Bragg grating”, Optics & Laser Technology, 42(2), pp.308-312.
[41] El-Agmy, R. and Al-Hosiny, N. (2017), “Power scaling of end-pumped Nd:YLF lasers, modeling and experiments”, Optik, 140, pp.584-591.
[42] Huang, X., Lan, J., Lin, Z., Cui, S., Wang, Y., Xu, B., Xu, H., Cai, Z., Xu, X. and Xu, J. (2016), “Power scaling and wavelength tuning of diode-pumped Nd:LSO laser at 1.35 μm”, Optical Materials, 58, pp.102-106.
[43] Zhang, W., Duan, X. and Li, L. (2018), “High power Ho:SSO laser resonantly pumped by a FBG-locked Tm fiber laser at 1940.3 nm”, Optik, 175, pp.340-343.
[44] Luo, S., Yan, X., Cui, Q., Xu, B., Xu, H. and Cai, Z. (2016), “Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm”, Optics Communications, 380, pp.357-360.
[45] Du, J., Yu, Y., An, X., Shang, J., Lei, J., Jiang, J., Jiang, L., Lv, W., Fan, G. and Gao, Q. (2018), “60 mm-aperture high average output power Nd:YAG composite ceramic disk laser”, Optik, 172, pp.197-202.
[46] Pryor, R. (2012), Multiphysics modeling using COMSOL 4, chapter 02, Va: Mercury Learning and Information, Dulles. |