博碩士論文 106426008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.225.56.194
姓名 鍾承翰(Cheng-Han Chung)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 類Kiva系統之 揀貨工作站挑選與訂單分配之相關問題的探討
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來隨著科技越趨進步,網路及智慧型手機越來越普及於社會大眾,大部分人的生活與網路已經越來越緊密,消費模式也一部分慢慢地與以前不同,不再只有到現場採購這個選項,在電腦及智慧型手機上進行購物的比例越來越高,消費需求也產生了改變,逐漸轉換為多樣、少量,甚至是客製化,使得在了解顧客喜好以及有效率的解決顧客問題等各種面向,在現在這個大數據與物聯網的時代變得更加重要。
而當消費者從網路的購物平台下單後,顧客無不希望能盡快地收到採購的商品,而另一方面對於物流公司而言,收到顧客的訂單之後需要的就是立即統整顧客資料,以最快的速度出貨給消費者,而這時候物流中心的出貨效率就變得萬分重要。本研究以亞馬遜物流中心的Kiva系統為主,因為此為目前現有物流中心最有效率的系統之一,Kiva系統最大的特色為利用無人搬運車到指定的揀貨區將訂單上的商品送到揀貨人員手上,以節省傳統方式中揀貨人員走動的時間,進而達到縮短出貨時間的目的。
本研究延續楊卓翰(2017)的研究針對亞馬遜Kiva系統流程中的兩個問題做出探討,分別為揀貨工作站挑選問題以及訂單選取問題,利用模擬軟體Arena建構出類似亞馬遜的物流中心環境,並探討改變Kiva機器人的方式會產生什麼影響,找出在不同績效及不同Kiva機器人數量下表現最好的法則及參數組合,以達到提升物流中心效率的目的。
摘要(英) In recent years, with the advancement of technology, Internet and smart phones have become more and more popular among the public. Most people′s lives and networks are getting closer and closer, and consumption patterns are gradually different from the past. Only by purchasing this option on-site, the proportion of shopping on computers and smart phones is getting higher and higher, consumer demand has also changed, and it has gradually changed into diverse, small, and even customized, making it possible to understand customer preferences and Efficient solutions to customer issues and other aspects have become more important in the era of big data and the Internet of Things.
When the consumer places an order from the online shopping platform, the customer wants to receive the purchased product as soon as possible, and on the other hand, for the logistics company, after receiving the customer′s order, it is necessary to immediately integrate the customer. The data is shipped to consumers at the fastest speed, and at this time the logistics center′s shipping efficiency becomes extremely important. This research is based on the Kiva system of the Amazon Logistics Center. Because this is one of the most efficient systems in the existing logistics center, the biggest feature of the Kiva system is to use the unmanned van to deliver the goods on the order to the designated picking area. In the hands of the pickers, it saves the time for the pickers to move in the traditional way, thus achieving the purpose of shortening the shipping time.
This study continues Yang Zhuohan′s (2017) research to address two issues in the Amazon Kiva system process, selecting picking problems for the picking station and order selection issues, using the simulation software Arena to construct a logistics center environment similar to Amazon, and explore What is the impact of changing the way Kiva robots are, finding the best-performing rules and combinations of parameters for different performances and different Kiva robots to improve the efficiency of the logistics center.
關鍵字(中) ★ 物流中心
★ 物聯網
★ 大數據
★ 亞馬遜
★ Kiva系統
關鍵字(英) ★ Logistics Center
★ Internet of Things
★ Big Data
★ Amazon
★ Kiva System
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 亞馬遜第八代物流中心 2
1.3 研究動機 3
1.4 研究目的 4
1.5 研究環境 4
1.6 論文架構 7
第二章 文獻探討 9
2.1 物流 10
2.1.1 物流的定義 10
2.1.2 物流的應用 12
2.1.3 物流中心的類型 13
2.2 Kiva系統 14
2.2.1 Kiva系統的介紹 14
2.2.2 Kiva系統之優點 19
2.2.3 Kiva系統之流程 20
2.3 訂單揀取 22
2.3.1 訂單揀取方式(Order Picking) 22
2.3.2 訂單批次化(Order Batching) 24
2.3.3 模糊理論(Fuzzy)與供應商選擇 26
2.4 揀貨路徑規劃 27
2.4.1 無線射頻辨識(Radio Frequency Identification , RFID) 28
第三章 研究方法 30
3.1 訂單分配之方法整理 30
3.2 變數定義 32
3.3 Kiva系統之流程 32
3.3.1 訂單產生及進入系統之流程 32
3.3.2 訂單分配給揀貨工作站作業流程 33
3.4 Kiva系統訂單分配流程之法則 37
3.4.1 訂單分配之揀貨工作站挑選法則 37
3.4.2 訂單分配之空儲存格挑選法則 42
3.4.3 訂單分配法則 50
第四章 實驗結果分析 60
4.1 實驗模擬 60
4.1.1 實驗環境與訂單設定 60
4.1.2 實驗環境假設 63
4.1.3 實驗績效準則 63
4.1.4 法則組合 64
4.2 實驗分析 68
4.2.1 系統在100台Kiva下之績效評估值 68
4.2.2 系統在125台Kiva下之績效評估值 89
4.2.3 系統在150台Kiva下之績效評估值 109
4.2.4 系統在175台Kiva下之績效評估值 130
4.2.5 系統在200台Kiva下之績效評估值 150
4.3 實驗結論 171
第五章 研究結論與後續研究建議 176
5.1 結論 176
5.2 後續研究建議 177
參考文獻 178
中文文獻 178
英文文獻 179
相關網站 183
參考文獻 美國SOLE. 國際物流協會台灣分會, 台灣全球運籌發展協會 (2010). 物流與運籌管理 (二版). 新北市: 美國 SOLE 國際物流協會臺灣分會出版.
張簡復中,2010,「物流管理」,新文京開發,台北,二版
劉忠政,2007,「播種式揀貨系統之規劃」,中央大學工業管理研究所碩士班,碩士論文
楊卓翰,2017,「類似Kiva系統之訂單分配於揀貨工作站與訂單選取探討」,中央大學工業管理研究所碩士班,碩士論文
劉浚明(1999),實務教案: 倉儲系統規劃技術.第 1-31 頁
經濟部商業司,1996,「物流經營管理實務」,中國生產力中心,台北
Welch, A. (2015). A cost-benefit analysis of Amazon Prime Air. Economics Commons.
Arabzad, S. M., Ghorbani, M., Razmi, J., & Shirouyehzad, H. (2015). Employing fuzzy TOPSIS and SWOT for supplier selection and order allocation problem. The International Journal of Advanced Manufacturing Technology, 76(5-8), 803-818.
Ballestín, F., Pérez, Á., Lino, P., Quintanilla, S., & Valls, V. (2013. Static and dynamic policies with RFID for the scheduling of retrieval and storage warehouse operations. Computers & Industrial Engineering, 66(4), 696-709.
Battini, D., Calzavara, M., Persona, A., & Sgarbossa, F. (2015). A comparative analysis of different paperless picking systems. Industrial Management & Data Systems, 115(3), 483-503.
Bozer, Y. A., & Aldarondo, F. J. (2018). A simulation-based comparison of two goods-to-person order picking systems in an online retail setting. International Journal of Production Research, 56(11), 3838-3858.
Briant, O., Cambazard, H., Cattaruzza, D., Catusse, N., Ladier, A. L., & Ogier, M. (2018, February). A column generation based approach for the joint order batching and picker routing problem. In ROADEF 2018.
Liang, C., Chee, K. J., Zou, Y., Zhu, H., Causo, A., Vidas, S., ... & Cheah, C. C. (2015, October). Automated robot picking system for e-commerce fulfillment warehouse application. In The 14th IFToMM World Congress.
Chen, F., Wang, H., Qi, C., & Xie, Y. (2013). An ant colony optimization routing algorithm for two order pickers with congestion consideration. Computers & Industrial Engineering, 66(1), 77-85.
Choe, P., Tew, J. D., & Tong, S. (2015). Effect of cognitive automation in a material handling system on manufacturing flexibility. International Journal of Production Economics, 170, 891-899.
Cortés, P., Gómez-Montoya, R. A., Muñuzuri, J., & Correa-Espinal, A. (2017). A tabu search approach to solving the picking routing problem for large-and medium-size distribution centres considering the availability of inventory and K heterogeneous material handling equipment. Applied Soft Computing, 53, 61-73.
D′Andrea, R. (2012). Guest editorial: A revolution in the warehouse: A retrospective on kiva systems and the grand challenges ahead. IEEE Transactions on Automation Science and Engineering, 9(4), 638-639.
D′andrea, R., Mansfield, P. K., Mountz, M. C., Polic, D., & Dingle, P. R. (2010). Method and system for transporting inventory items. U.S. Patent No. 7,826,919. Washington, DC: U.S. Patent and Trademark Office.
De Koster, R. B., Johnson, A. L., & Roy, D. (2017). Warehouse design and management.
De Koster, R., Le-Duc, T., & Roodbergen, K. otros (2006) Design and control of warehouse order picking: a literature review. ERIM Report Series Research in Management, ERS-2006-005-LIS, Erasmus Research Institute of Management (ERIM), Rotterdam.
Enright, J. J., & Wurman, P. R. (2011, August). Optimization and coordinated autonomy in mobile fulfillment systems. In Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelligence.
Grosse, E. H., Glock, C. H., & Jaber, M. Y. (2013). The effect of worker learning and forgetting on storage reassignment decisions in order picking systems. In Computers & Industrial Engineering 66 (2013) 653–662.
Erkan, T. E., & Can, G. F. (2014). Selecting the best warehouse data collecting system by using AHP and FAHP methods. Technical Gazette, 21(1), 87-93.
Faber, N., De Koster, M. B. M., & Smidts, A. (2013). Organizing warehouse management. International Journal of Operations & Production Management, 33(9), 1230-1256.
Giannikas, V., Lu, W., Robertson, B., & McFarlane, D. (2017). An interventionist strategy for warehouse order picking: Evidence from two case studies. International Journal of Production Economics, 189, 63-76.
Gómez-Montoya, R. A., Correa-Espinal, A. A., & Hernández-Vahos, J. D. (2016). Picking Routing Problem with K homogenous material handling equipment for a refrigerated warehouse. Revista Facultad de Ingeniería Universidad de Antioquia, (80), 9-20.
Grosse, E. H., & Glock, C. H. (2015). The effect of worker learning on manual order picking processes. International Journal of Production Economics, 170, 882-890.
Grosse, E. H., Glock, C. H., & Neumann, W. P. (2017). Human factors in order picking: a content analysis of the literature. International Journal of Production Research, 55(5), 1260-1276.
Grosse, E. H., Glock, C. H., Jaber, M. Y., & Neumann, W. P. (2015). Incorporating human factors in order picking planning models: framework and research opportunities. International Journal of Production Research, 53(3), 695-717.
Guo, C., & Li, X. (2014). A multi-echelon inventory system with supplier selection and order allocation under stochastic demand. International Journal of Production Economics, 151, 37-47.
Kessler, I., Purcell, J., & Coyle Shapiro, J. (2000). New forms of employment relations in the public services: the limits of strategic choice. Industrial Relations Journal 31:1.
Lee, J., Cho, H., & Kim, Y. S. (2015). Assessing business impacts of agility criterion and order allocation strategy in multi-criteria supplier selection. Expert Systems with Applications, 42(3), 1136-1148.
Li, C., & Qian, S. R. (2013). RFID dynamic positioning method. Journal of China Institute of Communications, 34(4), 144-148.
Li, J. T., & Liu, H. J. (2016). Design optimization of amazon robotics. Automation, Control and Intelligent Systems, 4(2), 48-52.
Lu, W., McFarlane, D., Giannikas, V., & Zhang, Q. (2016). An algorithm for dynamic order-picking in warehouse operations. European Journal of Operational Research, 248(1), 107-122.
Mountz, Michael C., and Peter R. Wurman. (2011)"Method and system for replenishing inventory items." U.S. Patent No. 7,894,932.
Nazari-Shirkouhi, S., Shakouri, H., Javadi, B., & Keramati, A. (2013). Supplier selection and order allocation problem using a two-phase fuzzy multi-objective linear programming. Applied Mathematical Modelling, 37(22), 9308-9323.
Pan, J. C. H., Shih, P. H., & Wu, M. H. (2015). Order batching in a pick-and-pass warehousing system with group genetic algorithm. Omega, 57, 238-248.
Peter R. Wurman, Raffaello D’Andrea,& Mick Mountz (2008). Coordinating Hundreds of Cooperative, Autonomous Robots in a Warehouse. In AI Magazine Volume 29 Number 1 (2008).
Schrotenboer, A. H., Wruck, S., Roodbergen, K. J., Veenstra, M., & Dijkstra, A. S. (2017). Order picker routing with product returns and interaction delays. International Journal of Production Research, 55(21), 6394-6406.
Gilbert, S. M., & Ballou, R. H. (1999). Supply chain benefits from advanced customer commitments (p. 13). In Journal of Operations Management 18 (1999). 61–73
Torabi, S. A., Baghersad, M., & Mansouri, S. A. (2015). Resilient supplier selection and order allocation under operational and disruption risks. Transportation Research Part E: Logistics and Transportation Review, 79, 22-48.
Van Gils, T., Ramaekers, K., Braekers, K., Depaire, B., & Caris, A. (2018). Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions. International Journal of Production Economics, 197, 243-261.
Wruck, S., Vis, I. F., & Boter, J. (2017). Risk control for staff planning in e-commerce warehouses. International Journal of Production Research, 55(21), 6453-6469.
Wurman, P. R., D′Andrea, R., & Mountz, M. (2008). Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI magazine, 29(1), 9-9.
Xu, X., Liu, T., Li, K., & Dong, W. (2014). Evaluating order throughput time with variable time window batching. International Journal of Production Research, 52(8), 2232-2242.
Xu, Z., Ming, X. G., Zhou, J., Song, W., He, L., & Li, M. (2013). Management optimisation based on dynamic SKU for RFID-enabled warehouse management in the steel supply chain. International Journal of Production Research, 51(10), 2981-2996.
Zare Mehrjerdi, Y., Alipour, M., & Mostafaeipour, A. (2018). Integrated Order Batching and Distribution Scheduling in a Single-block Order Picking Warehouse Considering S-Shape Routing Policy. International Journal of Engineering, 31(10), 1723-1733.
Zare Mehrjerdi, Y., Alipour, M., & Mostafaeipour, A. (2018). Integrated Order Batching and Distribution Scheduling in a Single-block Order Picking Warehouse Considering S-Shape Routing Policy. International Journal of Engineering, 31(10), 1723-1733.
Zhang, J., Wang, X., & Huang, K. (2016). Integrated on-line scheduling of order batching and delivery under B2C e-commerce. Computers & Industrial Engineering, 94, 280-289.
指導教授 何應欽(Ying-Chin Ho) 審核日期 2019-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明