參考文獻 |
REFERENCES
1. P., S. (2008) Development of tRNA synthetases and connection to genetic code and disease. Protein Sci. 17(10):1643–1652.
2. Antonellis A, (2008) The role of aminoacyl-tRNA synthetases in genetic diseases. Annu Rev Genomics Hum Genet 9:87-107; PMID:18767960.
3. Himeno H, H. T., Ueda T, Watanabe K, Miura K, Shimizu M. (1989) Role of the extra G-C pair at the end of the acceptor stem of tRNAHis in aminoacylation. Nucleic Acids Res 17:7855–7863.
4. Orellana O, C. L., Söll D. (1986) The additional guanylate at the 5′ terminus of Escherichia coli tRNAHis is the result of unusual processing by RNase P. Mol. Cell Biol 6:525–529.
5. Rao BS, (2015) Life without post-transcriptional addition of G-1: two alternatives for tRNAHis identity in Eukarya. RNA 21(2):243–253.
6. Rao BS, M. F., Gray MW, Jackman JE. (2013) Absence of a universal element for tRNAHis identity in Acanthamoeba castellanii. Nucleic Acids Res. 41(3):1885–1894.
7. Wang C, S. B., Williams KP. (2007) Loss of a universal tRNA feature. J. Bacteriol. 189:1954–1962.
8. Francklyn C, S. P. (1990) Enzymatic aminoacylation of an eight-base-pair microhelix with histidine. Proc Natl Acad Sci U S A. 7(21):8655–8659.
9. Connolly SA, R. A., Musier-Forsyth K, Francklyn CS. (2004) G-1: C73 recognition by an arginine cluster in the active site of Escherichia coli histidyl-tRNA synthetase. Biochemistry 43(4):962–969.
10. Hawko SA, F. C. (2001) Covariation of a specificity-determining structural motif in an aminoacyl-tRNA synthetase and a tRNA identity element. Biochemistry 40(7):1930–1936.
11. Lee, Y., Chang, CP., Cheng, YJ. et al. (2017) Evolutionary gain of highly divergent tRNA specificities by two isoforms of human histidyl-tRNA synthetase. Cell. Mol. Life Sci. 74: 2663.
12. Smith BA, J. J. (2014) Saccharomyces cerevisiae Thg1 uses 5′-pyrophosphate removal to control the addition of nucleotides to tRNA(His.). Biochemistry 53(8):1380–1391.
13. Gu W, J. J., Lohan AJ, Gray MW, Phizicky EM. (2003) tRNAHis maturation: an essential yeast protein catalyzes the addition of a guanine nucleotide to the 5′ end of tRNAHis. Genes Dev 17(23):2889–2901.
14. Edvardson, S., Elbaz-Alon, Y., Jalas, C. et al. (2016) A mutation in the THG1L gene in a family with cerebellar ataxia and developmental delay. Neurogenetics 17: 219.
15. Chang CP, L. G., Chen SJ, Chiu WC, Chen WH, Wang CC. (2008) Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. J Biol Chem 283(45):30699–30706.
16. Liu Q, W. H., Liu H, Teng M, Li X. Preliminary crystallographic analysis of glyceraldehyde-3-phosphate dehydrogenase 3 from Saccharomyces cerevisiae. Acta Crystallogr Sect F Struct Biol Cryst Commun 68(Pt 8):978–980.
17. Ringel AE, R. R., Picariello H, Huang KL, Lazarus AG, Holmes SG. (2013) Yeast Tdh3 (glyceraldehyde 3-phosphate dehydrogenase) is a Sir2-interacting factor that regulates transcriptional silencing and rDNA recombination. PLoS Genet 9(10):e1003871.
18. Abad MG, L. Y., Willcox A, Gott JM, Gray MW, Jackman JE. (2011) A role for tRNA(His) guanylyltransferase (Thg1)-like proteins from Dictyostelium discoideum in mitochondrial 5′-tRNA editing. RNA 17(4):613–623.
19. JB, H. F. a. C. (2014) IHG-1 Increases Mitochondrial Fusion and Bioenergetic Function. Diabetes 63;4314-4325.
20. Bolanos‐Garcia VM, D. O. (2006) Structural analysis and classification of native proteins from E. coli commonly co‐purified by immobilized metal affinity chromatography. Biochim Biophys Acta 1760:1304–1313.
21. Structural Genomics Consortium; China Structural Genomics Consortium; Northeast Structural Genomics Consortium, e. a. (2006) Protein production and purification. Nature Meth 5:135–146.
22. Niedzialkowska E, G. O., Handing KB, et al. (2016) Protein purification and crystallization artifacts: The tale usually not told. Protein Sci. 25(3):720–733.
23. Himeno H, H. T., Ueda T, Watanabe K, Miura K, Shimizu M. (1989) Role of the extra G-C pair at the end of the acceptor stem of tRNA(His) in aminoacylation. Nucleic Acids Res. 17(19):7855-63.
24. Nameki N, A. H., Shimizu M, Okada N, Himeno H. (1995) Identity elements of Saccharomyces cerevisiae tRNA(His). Nucleic Acids Res 23(3):389-94.
25. Suzuki T, S. T. (2014) A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Res. 42(11):7346–7357.
26. Lu, J., Marygold, S. J., Gharib, W. H., and Suter, B. (2015) The aminoacyl-tRNA synthetases of Drosophila melanogaster. Fly 9: 53-61.
27. Nakamura, D. W., Komatsu. (2018) Biochemical analysis of human tRNAHis guanylyltransferase in mitochondrial tRNAHis maturation. Biochem Biophys Res Commun 503(3):2015-2021.
28. Jackman JE, P. E. (2008) Identification of critical residues for G−1 addition and substrate recognition by tRNAHis guanylyltransferase. Biochemistry 47:4817–4825.
29. Hyde SJ, E. B., Smith BA, Eberley WA, Heintz NH, Jackman JE, Doublié S (2010) tRNAHis guanylyltransferase (THG1), a unique 3′-5′ nucleotidyl transferase, shares unexpected structural homology with canonical 5′-3′ DNA polymerases. Proc Natl Acad Sci U S A. 107: 20305–20310.
30. Orellana O., C., L., and Soll, D. (1986) The additional guanylate at the 5′ terminus of Escherichia coli tRNAHis is the result of unusual processing by RNase P. Mol. Cell. Biol 6: 525-529.
31. Burkard U., W., I., and Soll, D. (1988) Processing of histidine transfer RNA precursors. Abnormal cleavage site for RNase P. J. Biol. Chem. 263: 2447-2451.
32. Sprinzl M., H., C., Brown, M., Ioudovitch, A., and Steinberg, S. (1998) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 26: 148-153.
33. Cooley L., A., B., and Soll, D. (1982) Posttranscriptional nucleotide addition is responsible for the formation of the 5′ terminus of histidine tRNA. Proc. Natl. Acad. Sci 79: 6475-6479.
34. Williams J.B., C., L., and Soll, D. (1990) Enzymatic addition of guanylate to histidine transfer RNA. Methods Enzymol 181: 451-462.
35. Heinemann IU, O. D. P., Madinger C, et al. (2009) The appearance of pyrrolysine in tRNAHis guanylyltransferase by neutral evolution. Proc Natl Acad Sci U S A. 106(50):21103–21108.
36. Heinemann IU, R. L., Tomko RJ Jr, Söll D. (2010) 3′-5′ tRNAHis guanylyltransferase in bacteria. FEBS Lett. 584(16):3567–3572.
37. Jackman JE, P. E. (2006) tRNAHis guanylyltransferase catalyzes a 3′-5′ polymerization reaction that is distinct from G-l addition. Proc. Natl. Acad. Sci. 103:8640–8645.
38. Heinemann IU, N. A., O’Donoghue P, Eiler D, Söll D. (2012) tRNAHis-guanylyltransferase establishes tRNAHis identity. Nucleic Acids Res. 40(1):333–344.
39. Nakamura A, N. T., Heinemann IU, et al. (2013) Structural basis of reverse nucleotide polymerization. Proc Natl Acad Sci U S A. 110(52):20970–20975.
40. Jackman JE, G. J., Gray MW. (2012) Doing it in reverse: 3′-to-5′ polymerization by the Thg1 superfamily. RNA 18(5):886–899.
|