博碩士論文 106827010 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.22.250.87
姓名 周于靖(Yu Ching Chou)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 甘油對於皮膚細菌和皮膚發電之影響
(The Effect of Glycerol on Skin Bacterial Fermentation and Dermal Electricity)
相關論文
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 表皮葡萄球菌在人類皮膚微生物總體對皮膚訊號與腦波訊號影響
★ 土壤微生物組體研究:藉由內生細菌誘導之高GABA含量水稻增加神經肽Y以及減輕小鼠焦慮★ Fermentation of Leuconostoc mesenteroides reduces abdominal fat accumulation in high-fat diet mice
★ 選擇性發酵引發劑(SFI)觸發表皮葡萄球菌發酵以緩解UV-B誘導的自由基生成★ Identify and characterize the fermenting and electrogenic skin bacteria using selective prebiotics
★ 有益微生物的真菌學和細菌學研究: 在農業和人類健康中的應用★ 人體皮膚致電微生物組通過調節鐵和自由基來減輕紫外線B引起的皮膚損傷。
★ 微生物組中的細菌作為治療人類疾病的生物療法★ 皮膚表皮葡萄球菌作為電力活性菌以抑制痤瘡丙酸桿菌
★ 鼠李糖乳桿菌作為益生菌對抗 SARS-CoV-2 膜糖蛋白誘導的炎症★ Flavin mononucleotide-based electricity production by Staphylococcus epidermidis alleviates SARS-CoV-2- Nucleocapsid Phosphoprotein-induced IL-6 expression
★ Profiling the Age-related Microbiome via Detection of Antibodies to Gut Bacteria★ BACILLUS AMYLOLIQUEFACIENS生長在高GABA含量稻米刺激膠原蛋白合成以及減緩磷酸三鈣誘導產生的皮膚搔癢
★ 人體汗水之乳酸鈉觸發人類皮膚益生菌之表皮葡萄球菌發酵及皮膚電導之應用★ 5-甲基糠醛抑制L-乳酸葡萄球菌的發酵 表皮葡萄球菌和雙乙酰產生:一種淺在的新型除臭劑靶向人體汗液中的细菌發酵
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 皮膚為人體最大的器官被各式各樣的微生物所定殖,其中大部分的微生物對宿主無害甚至有益。藉由定序與大數據分析等實驗技術,人體菌相的相關研究發展迅速,其中包含了消化道、皮膚、生殖道等等,相異的微生物組體系統彼此間互相影響。現在有許多研究顯示,不同的微生物及微生物發酵皆可以產生不同的電壓訊號,且微生物發電其實已被開始廣泛應用於有機物質的電能,加速處理廢水或降低廢水處理過程的能源成本。因此發酵原理亦可套用於皮膚上的細菌且藉由發酵產生電,而其中皮膚上具有相對高比例的表皮葡萄球菌(Staphylococcus epidermidis, S. epi)及痤瘡丙酸桿菌(Propionibacterium acnes, P. acnes),由於微生物及微生物在發酵過程中所產生的酸會釋放出質子及電子,而電子會傳遞至電極並發出電壓,每一株不同的菌種及發酵後的電訊號特徵亦不同,因此本研究想探討皮膚微生物發酵及發電之間的關係,並找出電訊號對於人類有什麼幫助,希望在未來將此理論應用於人體皮膚上並針對不同的疾病進行治療或是預防。
摘要(英) Harmful bacteria could cause human diseases. However, the diseases can result from the imbalance between the harmful and beneficial bacteria. Staphylococcus epidermidis (S. epi) and Propionibacterium acnes (P. acnes), now named as Cutibacterium acnes (C. acnes) are two main bacteria in the human skin microbiome. Data from our laboratories demonstrated that both bacteria can use glycerol as a carbon source for fermentation. Electron is produced during the production of short chain fatty acids (SCDAs) from glycerol fermentation of skin bacteria. An electronic skin patch was fabricated in our laboratory to detect the electron from mouse and human skin. The studies here demonstrate that S. epi can mediate glycerol fermentation to produce higher level of electricity than P. acnes in skin of ICR mice.
In vitro data illustrated that electricity was produced to the highest level 10 min after glycerol fermentation of S. epi and declined to a baseline 60 min after. To test whether electron can function as an antioxidant to reduce free radicals induced by ultraviolet (UV), skin of ICR mice were topically applied with S. epi with glycerol for 10 and 60 min. The lipid peroxidation derived 4-hydroxynonenal (4-HNE) was used as a biomarker for the production of UV-induced free radicals. Our western blot results here demonstrate that the production of UV-induced 4-HNE was detectable when mouse skin was exposed to the culture of S. epi plus glycerol for 60 min. However, the production of UV-induced 4-HNE was dramatically reduced 10 min after exposure of skin to the culture of S. epi plus glycerol. This result suggests that electron generated by glycerol fermentation of S. epi in skin may be able to eliminate the free radicals induced by UV. Our studies here provide the novel of biological roles of endogenous glycerol and skin beneficial bacteria in the UV-induced skin damages.
關鍵字(中) ★ 發酵
★ 皮膚
★ 電壓
★ 微生物
★ 即時聚合酶連鎖反應
關鍵字(英) ★ fermentation
★ skin
★ electricity
★ microbiome
★ UV
論文目次 中文摘要 I
英文摘要 II
致謝 IV
圖目錄 VIII
表目錄 X
縮寫(Abbreviation) XI
一、緒論(Introduction) 1
1-1、研究背景及動機 1
1-2、人類微生物總體(Human microbiome) 2
1-3、細菌發酵產生電 4
1-3-1、發酵機制 4
1-3-2、細菌發電 5
1-3-3、酸發電 7
1-3-4、燃料電池 8
1-3-5、短鏈脂肪酸 (Short-chain fatty acids,SCFAs) 9
1-4、自由基與電子的關係 9
1-4-1、紫外線與自由基的關係 10
1-4-2、4-Hydroxynonenal (4-HNE)與自由基的關係 10
1-5、甘油 10
二、實驗目的及實驗架構 11
2-1、實驗目的 11
2-2、實驗架構 11
三、材料與方法 12
3-1、實驗材料 12
3-1-1、實驗儀器及廠牌 12
3-1-2、常用藥品與試劑 12
3-2、實驗方法 14
3-2-1、In vivo細菌發電實驗 14
3-2-2、即時定量聚合酶連鎖反應 (qRT-PCR) 15
3-2-3、西方免疫墨點法 (Western immune blotting) 16
3-2-4、統計分析 16
四、結果 17
4-1、探討甘油對於不同微生物產生的電訊號 17
4-2、探討發酵後產生的短鏈脂肪酸的影響 18
4-2-1、探討產生電壓訊號之原因 19
4-3、微生物發酵後產生的電能預防什麼疾病 20
4-4、未來的應用 22
4-4-1、探討是否還有其他化合物能與微生物結合 22
4-4-2、人體的應用 23
五、討論 25
六、結論 27
參考文獻 28
參考文獻 1. Fitz-Gibbon S1, T.S., Chiu BH, Nguyen L, Du C, Liu M, Elashoff D, Erfe MC, Loncaric A, Kim J, Modlin RL, Miller JF, Sodergren E, Craft N, Weinstock GM, Li H., Propionibacterium acnes Strain Populations in the Human Skin Microbiome Associated with Acne. J Invest Dermatol. , 2013. 133(9): p. 2152-60.
2. Kao MS1, W.Y., Marito S1, Huang S3, Lin WZ1, Gangoiti JA4, Barshop BA4, Hyun C4, Lee WR5, Sanford JA2, Gallo RL2, Ran Y6, Chen WT7, Huang CJ8, Hsieh MF7, Huang CM9., The mPEG-PCL Copolymer for Selective Fermentation of Staphylococcus lugdunensis Against Candida parapsilosis in the Human Microbiome. J Microb Biochem Technol., 2016.
3. Muya Shu , Y.W., Jinghua Yu, Sherwin Kuo, Alvin Coda, Yong Jiang, Richard L. Gallo, Chun-Ming Huang, Fermentation of Propionibacterium acnes, a Commensal Bacterium in the Human Skin Microbiome, as Skin Probiotics against Methicillin-Resistant Staphylococcus aureus. 2013.
4. Müller, V., Bacterial Fermentation. 2001.
5. MostafaRahimnejadabArashAdhamiabSoheilDarvariabAlirezaZirepourabSang-EunOhc, Microbial fuel cell as new technology for bioelectricity generation: a review. Alexandria Engineering Journal, 2015. 54(3): p. 745-756.
6. Zakira Naureen, Z.A.R.A.M., Miyassa Nasser Al Jabri, Saif Khalfan Al Housni, Syed Abdullah Gilani, Fazal Mabood, Saima Farooq, Javid Hussain, Ahmed Al Harrasi, Generation of Electricity by Electrogenic Bacteria in a Microbial Fuel Cell Powered by Waste Water. Microbial Fuel Cells., 2008.
7. Santoro C1, A.C., Erable B3, Ieropoulos I4., Microbial fuel cells: From fundamentals to applications. A review. J Power Sources. , 2017. 15(356): p. 225-244.
8. Wang Y1, K.S., Shu M, Yu J, Huang S, Dai A, Two A, Gallo RL, Huang CM., Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol. , 2014. 98(1): p. 411-24.
9. Ashley A. Ross, K.M.M., J. Scott Weese, and Josh D. Neufeld, Comprehensive skin microbiome analysis reveals theuniqueness of human skin and evidence for phylosymbiosis within the class Mammalia. Proceedings of the National Academy of Sciences of the United States of America, 2018.
10. 郭晓昀, 于., 郑天凌. , 微生物太陽能燃料電池的研究進展. 微生物学报, 2015.
11. Yu J , S.J., Park Y , Cho S , Lee T Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment. Bioresource Technology, 2012.
12. Nice, K.a.S., Jonathan, "How Fuel Cells Work: Polymer Exchange Membrane Fuel Cells"How Stuff Works. 2011.
13. Ross, J.N.O.S.M.C.R.P.M.O.C.C.H.R.P., Human skin microbiota is a rich source of bacteriocin-producing staphylococci that kill human pathogens FEMS Microbiology Ecology, 2019. 95(2).
14. Segre, E.A.G.a.J.A., The skin microbiome. Nat Rev Microbiol., 2011. 9(4): 244–253.
15. Wang Y1, K.S., Shu M, Yu J, Huang S, Dai A, Two A, Gallo RL, Huang CM., Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol., 2014 98(1): p. 411-24.
16. Wang Y1, Z.L., Yu J2, Huang S3, Wang Z1, Chun KA1, Lee TL1, Chen YT4, Gallo RL1, Huang CM5., A Co-Drug of Butyric Acid Derived from Fermentation Metabolites of the Human Skin Microbiome Stimulates Adipogenic Differentiation of Adipose-Derived Stem Cells: Implications in Tissue Augmentation. J Invest Dermatol. , 2017 137(1): p. 46-56.
17. Augenlicht LH1, M.J., Wilson A, Arango D, Yang W, Heerdt BG, Velcich A., Short chain fatty acids and colon cancer. J Nutr. , 2002. 132(12): p. 3804S-3808S.
18. J Segain, D.R.d.l.B., A Bourreille, V Leray, N Gervois, C Rosales, L Ferrier, C Bonnet, H Blottiere, and J Galmiche, Butyrate inhibits inflammatory responses through NFκB inhibition: implications for Crohn′s disease. Gut. , 2000. 47(3): p. 397-403.
19. 于卓腾, 杭., 姚文, 朱伟云, 肠道产丁酸细菌及其丁酸产生机制的研究进展. 世界华人消化杂志, 2006.
20. Wang, S., The impact of Staphylococcus epidermidis in the human skin microbiome on the skin conductance and brain wave 2018.
21. G1., F., Anaerobic metabolism of aromatic compounds. Ann N Y Acad Sci. , 2008 1125(82-99).
22. Mu¨ller, V., Bacterial Fermentation. 2001.
23. Babauta J1, R.R., Lewandowski Z, Beyenal H., Electrochemically active biofilms: facts and fiction. A review. Biofouling., 2012. 28(8): p. 789-812.
24. J. Stoulil, D.D., Microbial corrosion of metallic materials in a deep nuclear-waste repository. The Journal of Association of Corrosion Engineers (Asociace korozních inženýru), 2016.
25. M.PeytonbRebeccaMuellerbMichelleMeagherbHalukBeyenala, A.T.H., In situ enrichment of microbial communities on polarized electrodes deployed in alkaline hot springs. Journal of Power Sources, 2019. 414(28): p. 547-556.
26. A., S.-G., The living state and cancer. Physiol Chem Phys. , 1980.
27. Melamede, R., Dissipative Structures and the Origins of Life. Unifying Themes in Complex Systems IV 2008.
28. Srinivasan, T., Electrons in Biology. Int J Yoga, 2017.
29. Silverstein, T.P., Weak vs Strong Acids and Bases: The Football Analogy. J. Chem. Educ., 2000.
30. Myers, R., THE CHEMISTRY OF HETEROCYCLES: STRUCTURE, REACTIONS, SYNTHESES, AND APPLICATIONS. The Basics of Chemistry, Greenwood Press, 2003.
31. House, J.E., Inorganic Chemistry,. Inorganic Chemistry, Academic Press,, 2008.
32. Wang, W.-Y., Energy teaching aid manufacture 2012.
33. Brody, T., Nutritional biochemistry. Nutritional Biochemistry 2nd. Academic Press. , 2012.
34. Blake DR, A.R., Lunec J., Free radicals in biological systems--a review orientated to inflammatory processes. Br Med Bull., 1987 43(2): p. 371-85.
35. Chao, P.K.C.-K., UV-Induced Apoptosis in Resistant HeLa Cells. Bioscience Reports, 2000. 20(2): p. 99-108.
36. Aboussekhra, M.A.A.-M.F.M.A.-K.Z.K.P.-A.B.K.A.A.-H.A., p53 is dispensable for UV-induced cell cycle arrest at late G1 in mammalian cells. Carcinogenesis, 2001. 22(4): p. 579-578.
37. Pavey S1, R.T., Gabrielli B., G2 phase cell cycle arrest in human skin following UV irradiation. Oncogene., 2001. 20(43): p. 6103-10.
38. Gentile M1, L.L., Laiho M., Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses. Nucleic Acids Res. , 2003 31(16): p. 4779-90.
39. Chen LC1, C.T., Tuan YF, Chen CC, Chien CC, Lee HY, Chen SC., Activation of MAPK pathways and downstream transcription factors in 2-aminobiphenyl-induced apoptosis. Environ Toxicol. , 2015 30(2): p. 205-11.
40. Hou Z1, Z.Y., Deng K1,2, Chen Y1,2, Li X1, Deng X1,2, Cheng Z1, Lian H1, Li C1, Lin J1., UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. ACS Nano., 2015. 24(9).
41. 人体内的自由基与抗氧化(抗衰老).
42. Xiao M1, Z.H., Xia L3, Tao Y3, Yin H4., Pathophysiology of Mitochondrial Lipid Oxidation: Role of 4-Hydroxynonenal (4-HNE) and other Bioactive Lipids in Mitochondria. Free Radic Biol Med. , 2017
43. Boury-Jamot M1, S.R., Tailhardat M, Le Varlet B, Bonté F, Dumas M, Verbavatz JM., Expression and function of aquaporins in human skin: Is aquaporin-3 just a glycerol transporter?
. Biochim Biophys Acta. , 2006
44. Fluhr JW1, D.R., Surber C., Glycerol and the skin: holistic approach to its origin and functions. Br J Dermatol., 2008.
45. Hara-Chikuma M1, V.A., Physiological roles of glycerol-transporting aquaporins: the aquaglyceroporins. Cell Mol Life Sci. , 2006 J. 63(12): p. 1386-92.
46. Fluhr JW1, D.R., Surber C., Glycerol and the skin: holistic approach to its origin and functions. Br J Dermatol. , 2008.
47. SR, G., Physical properties of glycerol. In: Glycerin: A Key Cosmetic Ingredient Marcel Dekker, 1991.
48. Logan, H.L.C.E., Production of Electricity from Acetate or Butyrate Using a Single-Chamber Microbial Fuel Cell. Environ. Sci. Technol, 2005.
指導教授 黃俊銘(Chun Ming Huang) 審核日期 2019-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明