博碩士論文 106523037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.22.61.73
姓名 梁洪祥(HUNG-HSIANG LIANG)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於第五代行動通訊 URLLC 技術上行傳輸策略之研究
(A Study on URLLC Uplink Transmission Strategies for 5G Mobile System)
相關論文
★ 利用智慧天線系統實現精準室內定位技術★ 電力線通訊之競爭存取與路由方法設計與實現
★ 設計與實作基於GRAPES函式庫之P2P即時串流系統★ 利用離散餘弦基礎之聲音浮水印達到室內定位技術
★ 利用虛擬指紋建置法之智慧型天線系統實現精準室內定位技術★ 即時影像串流自適應播放系統之研究
★ 利用模糊邏輯控制器於蜂巢式網路降低位置管理機制成本★ 基於支持向量機及模糊推理之地震預警系統研製
★ 基於行動裝置之分散式多人會議系統★ 以分群為基礎之3D無線與光學網路晶片頻道存取方法
★ 基於收前先聽LBR機制之授權型輔助接入LAA架構下於異質網路中暴露節點之研究★ 支援跳頻之IEEE 802.15.4 ZigBee無線隨身網路機制設計與實現
★ 應用於IEEE 802.16行動無線都會網路省電模式參數設定之智慧策略★ IEEE 802.15.4 ZigBee 無線隨身網路高效能路由演算法分析與設計
★ 應用於IEEE 802.16無線寬頻都會網路之具調適性自動重傳請求回報機制★ 無線感測網路為基礎之空間平面圖自動建構之技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前 3GPP 標準組織正規畫與制定 5G 通訊標準以滿足及支援多種應用及服務。其中 URLLC 為 5G 三大應用領域之一,擁有高可靠度與低延遲之特性,其要求達到之門檻為長度為 32 位元組之封包必須於 1毫秒內傳送成功,且傳輸成功率必須達到 99.999%。因此,為保證隨時可收送 URLLC 資料以滿足所制定之規範,頻譜資源之配置與傳輸方法之設計將會是研究之重點,尤其是上行傳輸策略。
隨著 Release-15 規格制定結束,URLLC 相關技術與討論已越來越多,其中 semi-persistent scheduling (SPS) 以週期性配置專屬資源(dedicated resource)搭配重傳之機制被視為可行之上行傳輸方案之一,但此策略仍具有可改進空間。目前討論之主要重傳技術可區分為回饋式重傳機制(feedback-based retransmission)和盲目重送機制(blind repetition),前者是利用初次傳送之 NACK 回報進行重傳,後者是伴隨初次傳送時進行重傳以縮短延遲。本論文嘗試分析各種技術並進行技術融合,目標為找出符合 URLLC 嚴格之可靠度與延遲標準,同時達成頻譜使用率最大化之上行傳輸方法。本計劃將分析 SPS 搭配重傳機制的多種可能組合,並以數學分析驗證其可行性並尋求最佳組合。經初步分析後,本論文提出同步上行傳輸之概念;換言之,UE(User Equipment)將於不同的頻域資源上同時進行初次傳送與重傳,以節省重傳所需之延遲並提高資料可靠度。為了提高頻譜使用率,針對重傳機制之共享資源(shared resource)資源配置需一併考量,然而其潛在碰撞發生之問題可藉由支援Successive Interference Cancellation(SIC) 接收器消除部分碰撞情況。另外,本論文將更進一步設計與分析如何將初始傳輸於 shared resource 並搭配重傳機制之策略,以節省更多資源並達到高可靠度與低延遲之目標。
摘要(英) New radio technologies for the fifth generation (5G) wireless system are currently standardized by the Third Generation Partnership Project (3GPP) to support diverse services and applications. Ultra-reliable low latency communications (URLLC) is one of the major service categories of 5G. The strict requirement of URLLC characterized by its low latency and high reliability is that the transmission latency of a 32-byte packet must be less than 1ms with a success probability of 99.999%. Therefore, in order to ensure that URLLC data can be sent and received at any time, the design of the spectrum resource configuration and transmission/retransmission method will be the main focus of this research.
Since specification of Release-15 has been ratified, semi-persistent scheduling (SPS) with retransmission is considered as a promising solution for uplink transmission to achieve requirement of URLLC. The considered retransmission techniques include feedback-based retransmission and blind repetition. The former relies on the feedback of the first transmission to trigger retransmission and the latter proactively transmits one or more duplicated transmissions with the first transmission without feedback. However, there are still many issues opened to be discussed and improved.
In this thesis, we aim to analyze and integrate all existing strategies, and then figure out an appropriate uplink transmission scheme that not only maximizes spectrum utilization but also copes with stringent requirement of URLLC. At first, we will analyze various possible combinations of SPS with multiple retransmission strategies to verify their feasibilities and then find out the most appropriate combination strategy. Based on analytical results, we will introduce a novel concept, called parallel transmission, in which the user equipment will perform the initial transmission and retransmission on different resources in frequency band at the same time to save the time required for feedback-based retransmission for improving data reliability. In order to improve spectrum utilization, the resource configuration of the shared resource will be considered in this thesis. The potential collision problem in strategies using shared resource will be discussed and partially solved by applying the successive interference cancellation (SIC) receiver. Besides, we will further design and analyze the possible combinations of arranging the initial transmission on shared resources with different retransmission techniques in order to further save resources, achieve high reliability and low latency at the same time.
關鍵字(中) ★ 5G 新一代行動通訊
★ 自動重傳機制
★ 回饋重傳機制
★ 半永久性調度
★ 連續干擾消除
★ 高可靠低延遲通訊
關鍵字(英) ★ 5G New Radio
★ Blind Repetition
★ Feedback-based Retransmission
★ Semi-persistent Scheduling
★ Successive Interference Cancellation
★ URLLC
論文目次 中文摘要 I
ABSTRACT III
CONTENTS V
LIST OF FIGURES VI
LIST OF TABLES VII
1. INTRODUCTION 1
2. RELATED WORKS 4
2-1. Numerology 4
2-2. Grant-free Uplink Transmission Technique 5
2-3. Uplink Retransmission Method 6
2-4. Successive Interference Cancellation (SIC) Receiver 7
3. SYSTEM MODEL 10
3-1. Grant-free DR-major Retransmission Scheme 12
3-2. Grant-free PR-major Retransmission Scheme 18
3-3. Grant-free SR-major Retransmission Scheme 24
3-4. Grant-based Retransmission Scheme 28
4. PERFORMANCE EVALUATION 31
5. FURURE WORK 40
6. CONCLUSION 43
7. REFERENCES 44
參考文獻 [1] ITU, “IMT vision - framework and overall objectives of the future development of IMT for 2020 and beyond,” ITU-R M.2083-0, Sep. 2015.
[2] 3GPP TR 38.913, “Study on scenarios and requirements for next generation access technologies,” V15.0.0, Jun. 2018.
[3] 3GPP TR 38.824, “Study on physical layer enhancements for NR Ultra Reliable and Low Latency case (URLLC),” 3GPP Tech. Rep., V1.0.0, Nov. 2018.
[4] 3GPP TS 36.213, “Evolved Universal Terrestrial Radio Access (E-UTRA);Physical layer procedures,” 3GPP Tech. Spec., V15.3.0, Sep. 2018.
[5] T. Jacobsen, R. B. Abreu, G. Berardinelli, K. I. Pedersen, P. E. Mogensen, I. Kovcs, and T. Kozlova, “System level analysis of uplink grant-free transmission for URLLC,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM) Workshop, Dec. 2017.
[6] R1-1611689, “Grant-free transmission scheme for UL URLLC,” 3GPP TSG RAN WG1 #87, Nov. 2016.
[7] 3GPP TSG R1-167309, “Semi-persistent scheduling for 5G new radio URLLC,” RAN WG1 #86, Aug. 2016.
[8] R1-1705654, “UL grant-free transmission for URLLC,” 3GPP TSG RAN WG1#88, Apr. 2017.
[9] Z. Y. Zhou, R. Ratasuk, N. Mangalvedhe, and A. Ghosh, “Resource allocation for uplink grant-free ultra-reliable and low latency communications,” in Proceedings of the IEEE Vehicular Technology Conference (VTC), Jun. 2018.
[10] C. Wang, Y. Chen, Y. Q. Wu and L. Q. Zhang, “Performance Evaluation of Grant-Free Transmission for Uplink URLLC Services,” in IEEE VTC Spring, Jun., 2017.
[11] R. Abreu, P. Mogensen, and K. I. Pedersen, ‘‘Pre-scheduled resources for retransmissions in ultra-reliable and low latency communications,’’in IEEE Wireless Commun. Netw. Conf., Mar. 2017
[12] R. Abreu, G. Berardinelli, T. Jacobsen, K. Pedersen, and P. Mogensen, “A blind retransmission scheme for ultra-reliable and low latency communications,” in Proceedings of the IEEE Vehicular Technology Conference (VTC), Jun. 2018.
[13] G. Berardinelli, N. H. Mahmood, R. Abreu, T. Jacobsen, K. Pedersen, I. Kovács, and P. Mogensen, “Reliability analysis of uplink grant-free transmission over shared resources,” IEEE Access, vol. 6, pp. 23 602-23 611, Apr. 2018.
[14] R1-1612246, "Discussion on HARQ support for URLLC", 3GPP TSG RAN WG1 #87, Nov., 2016.
[15] 3GPP TR 38.912, "Study on New Radio (NR) Access Technology," 3GPP Tech. Rep., v15.0.0, Jun., 2018.
[16] L. Buccheri, S. Mandelli, S. Saur, L. Reggiani, and M. Magarini, “Hybrid retransmission scheme for QoS-defined 5G ultra-reliable lowlatency communications,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Apr. 2018.
[17] Miridakis et. al., "A Survey on the Successive Interference Cancellation Performance for Single-Antenna and Multiple-Antenna OFDM Systems", vol. 15, no. 1, IEEE Comm. Surveys & Tutorials, 2013.
[18] Ericsson, “Designing For The Future- The 5G NR Physical Layer”, 2017.
[19] 3GPP TR 38.802, “Study on New Radio Access Technology Physical Layer Aspects,” 3GPP Tech. Rep., V14.2.0, Sep. 2017.
[20] 3GPP TS 36.306, “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio access capabilities,” 3GPP Tech. Rep., V15.4.0, Mar. 2019.
[21] 3GPP TS 38.306, “NR; User Equipment (UE) radio access capabilities,” 3GPP Tech. Rep., V15.5.0, Sep. Mar. 2019.
指導教授 許獻聰 審核日期 2019-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明