博碩士論文 101323057 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.191.238.193
姓名 黃鈺鈞(Yu-Jun Haung)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 雷射加工機應用於微米元件轉印製程之研究
(Study of Micro-device Transfer on a Pulsed Laser Apparatus)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極
★ 航太用鋁合金板熱處理爐設施之研究★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工
★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析
★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究★ 雷射選擇圖案與無電鍍銅沉積應用於鋁矽酸玻璃基板之金屬化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在生產微發光二極體顯示器(LED display)的眾多技術環節中,本文針對其中至為關鍵的技術-巨量轉移(Mass transfer)進行探討與改進。現行巨量的轉移技術中,本文以雷射正向轉移(Laser-induced forward transfer,LIFT)技術為基礎,進行改良研究。我們從在藍膠帶(Blue tape)上的陣列LEDs出發,將LEDs轉移到最終的目標基板上(Destination substrate)。全程包含膠黏轉移與雷射轉移兩個轉移過程:前者,是將LEDs從藍膠帶上轉移到過渡基板(Transition substrate)之犧牲層(Sacrificial layer)上;後者,再將LEDs轉移到目標基板上。
首先,有別於一般常用的UV雷射光源,我們選用適合工業量產、紅外光奈秒脈衝期的光纖雷射;其次,針對國內廠商自行研發的犧牲層材料,稱為光吸收膠(Light Absorbing Polymer Glue, LAPG),以單層與雙層結構形式進行膠黏轉移作詳細的實驗與分析,從分析結果中選取理想的LAPG配方與結構層數,供後續的LIFT製程使用;接著,嘗試不同的LAPG膜厚、雷射功率與重複率等三個參數組合,檢視LIFT之轉移成果;最後,以隨機森林 (Random forest) 方法分析LIFT過程中此三個參數,成功找出參數間的重要相關性排序。
結果顯示,本研究提出的雷射轉移配置可成功將對LEDs做大量的轉移,此法也可作選擇性、個別LED之局部轉移。將轉移後的LEDs與微米銅導線串聯接電,發光測試顯示經 LIFT轉移後之LEDs在全程轉移過程功能完整。最後,隨機森林方法分析顯示,在目前的架構與實驗方法下,LAPG之膜厚與LIFT轉移成功的關聯性最高。
摘要(英) Micro-LED (µLED) is a very promising technology for creating highly efficient and great looking flexible displays. It, however, includes numerous sophisticated apparatuses that involve complex processes. One of the critical challenges for the commercialization of LED display technology is to develop a cost-effective method for transferring massively LEDs. Among the competitive mass transfer techs of µLED, this study aims at facilitating the laser-induced forward transfer (LIFT) technology. Transferring an array of µLEDs from a blue tape to the final destination substrate includes two steps: adhesive transfer and laser transfer. The former is to move µLEDs from the blue tape to the the sacrificial layer on a transition substrate; the latter, then transfer them to the destination substrate.
Firstly, instead of the UV laser, a commonly used light source in LIFT, we use a infrared fiber laser, with nano-second pulse duration, that is cost effective and popular in the industry. Secondly, the adhesive transfer process is tested based on the composition and thickness of the sacrificial layer. Its materials are developed by a domestic manufacturer, hereby named as the light absorbing polymer glue (LAPG). The recipes for LAPG and various thicknesses for the sacrificial layer that are achievable for effective adhesive transfer are obtained for the subsequent LIFT process. Thirdly, the LIFT transfer results based various parameters of the LAPG film thickness, laser power and repetition rate are examined. Finally, the random forest method is used to analyze the three parameters in the LIFT process and the priority of their importance is determined.
Results show that the proposed LIFT scheme can successfully transfer massively LEDs to the destination substrate. In addition, this method has the advantage of local transfer, moving an individual LED to a specified location. The lighting test is executed by connecting the transferred LEDs in series on a test pad that consists of two copper lines linking the LEDs’ anode and cathode, respectively. It proves that the LEDs function is well preserved throughout the transfer process. Finally, the random forest analysis shows that, under the current experimental configuration, the film thickness of LAPG is the most relevant to the success of LIFT transfer.
關鍵字(中) ★ 微發光二極體顯示器
★ 巨量轉移
★ 雷射正向轉移
★ 隨機森林
關鍵字(英) ★ μLED display
★ mass transfer of μLEDs
★ laser-induced forward transfer(LIFT)
★ random forest
論文目次 誌 謝 i
摘 要 ii
Abstract iii
目 錄 v
圖 目 錄 viii
表 目 錄 xi
第一章 緒論 1
1-1 前言 1
1-2 發光二極體簡介 2
1-3 現代顯示器技術發展 4
1-4 研究動機與目的 8
第二章 文獻回顧 9
2-1 Micro LED顯示器發展 9
2-2 Micro LED巨量轉移技術分析 12
2-2-1 取放轉移技術 13
2-2-2 靜電轉移技術 14
2-2-3 流體組裝技術 17
2-2-4 微轉印技術 20
2-2-5 雷射剝離技術 24
2-2-6 雷射正向轉移技術 27
2-3 巨量轉移技術比較 30
2-4 傳承與創新 32
第三章 研究方法 33
3-1 實驗目標與架構 33
3-2 隨機森林方法 34
3-3 Micro LEDs尺寸介紹 36
3-4 實驗步驟 38
3-4-1 膠黏轉移 38
3-4-2 雷射正向轉移 40
3-4-3 點亮測試 42
3-4-4 隨機森林方法數據蒐集 43
3-5 實驗用品及相關儀器 45
3-5-1 實驗用品 45
3-5-2 實驗設備 46
第四章 結果與討論 47
4-1 光吸收膠膠黏轉移結果分析 47
4-1-1 光吸收膠特性分析 47
4-1-2 光吸收膠特性整理 55
4-1-3 過渡基板表面輪廓分析 56
4-2 雷射正向轉移 57
4-2-1 雷射正向轉移試片 57
4-2-2 離焦設定 57
4-2-3 雷射正向轉移測試參數表 58
4-2-4 單層結構LAPG雷射正向轉移測試 59
4-2-5 雙層結構LAPG雷射正向轉移測試 66
4-2-6 雷射正向轉移測試結果總整理 68
4-3 Micro LEDs經雷射正向轉移後點亮測試 72
4-3-1 雷射直打Micro LEDs點亮測試 73
4-3-2 轉移後之micro LEDs表面清洗 73
4-3-3 轉移後micro LEDs點亮結果 75
4-4 雷射正向轉移成功率與位移數據關係 76
4-4-1 大量雷射正向轉移與雷射能量之關係驗證 76
4-4-2 雷射正向轉移後micro LEDs位移數據分析 79
4-5 隨機森林方法於轉印參數分析 82
4-5-1 LAPG膜厚數據採集 83
4-5-2 計算擬合結果 85
第五章 結論與未來工作 87
參 考 文 獻 88
論文口試委員建議與問題集 90
參考文獻 [1] T. A. Edison, "Improvement in carbon-telephones," ed: Google Patents, 1879.
[2] Led-neolight, "File:Br20 1.jpg - Wikipedia," 2010.
[3] STRONGlk7, "File:OEL right.JPG - Wikipedia," 2012.
[4] ivan, "2016年有關MicroLED的8大事件-LEDinside," 2016.
[5] H. J. Round, Electrical World, vol. 49, p. 309, 1907.
[6] O. V. Losev, "Luminous carborundum detector and detection with crystals," vol. 44, pp. 485-494, 1927.
[7] G. Destriau, "Research on the scintillation of zinc sulphide with radiation," J. Chim. Phys, vol. 33, pp. 587-625, 1936.
[8] N. Holonyak Jr and S. F. Bevacqua, "Coherent (visible) light emission from Ga (As1− x P x) junctions," Applied Physics Letters, vol. 1, no. 4, pp. 82-83, 1962.
[9] E. A. M. J.I. Pankove, D. Richman, J.E. Berkeyheiser, "ELECTROLUMINESCENCE IN GaN," JOURNAL OF LUMINESCENCE, 1971.
[10] M. K. Hiroshi Amano, Kazumasa Hiramatsu, Isamu Akasaki, "P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)," Japanese Journal of Applied Physics, vol. 28, no. 12, pp. L 2112-L 2114, 1989.
[11] Shuji Nakamura, Takashi Mukai, and M. Senoh, "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes," Applied Physics Letters, vol. 64, no. 13, pp. 1687-1689, 1994.
[12] Shuji Nakamura et al., "InGaN-Based Multi-Quantum-Well-Structure Laser Diodes," Japanese Journal of Applied Physics, vol. 35, no. 1B, pp. L74-L76, 1996.
[13] n.-t. Reasearch, "GLOBAL MICRO-LED MARKET TO SEE $10.7 BILLION REVENUES IN 2022," 2018.
[14] S. Takano and K. Takahashi, "A High Density Full Color LED Display Panel on a Silicon Microreflector," 電気学会論文誌. E, センサ・マイクロマシン部門誌, vol. 121, no. 8, pp. 464-468, 2001.
[15] C.W. Keung and K. M. Lau, "Matrix-Addressable III-Nitride LED Arrays on Si Substrates by Flip-Chip Technology," in Electronic Materials Conference (PA, 2006), 2006.
[16] G. Li, "LEDinside: 從Micro LED技術挑戰窺視Micro LED顯示器發展方向," 2019.
[17] L.-Y. Chen, P.-Y. Chang, C. Chih-Hui, C.-Y. Chang, S.-C. Lin, and H.-W. Lee, "Transfer head array and transferring method," ed: Google Patents, 2018.
[18] Andreas Bibl, John A Higginson, Hung-fai Stephen Law, and H.-H. Hu, "Micro device transfer head," ed: Google Patents, 2014.
[19] H.-J. Yeh and J. S. Smith, "Fluidic self-assembly of microstructures and its application to the integration of GaAs on Si Substrates," IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 6, no. 6, pp. 706-708, 1994. IEEE
[20] K. Sasaki, P. J. Schuele, K. Ulmer, and J.-J. Lee, "System and Method for the Fluidic Assembly of Emissive Displays," ed: Google Patents, 2017.
[21] C. Bower and M. Meitl, "Compound micro-assembly strategies and devices," ed: Google Patents, 2016.
[22] C. Bower, M. Meitl, D. Gomez, C. Prevatte, and S. Bonafede, "Printable inorganic semiconductor structures," ed: Google Patents, 2017.
[23] C. Bower and M. Meitl, "Systems and methods for preparing GaN and related materials for micro assembly," ed: Google Patents, 2018.
[24] C. Bower, M. Meitl, D. Gomez, S. Bonafede, and D. Kneeburg, "Apparatus and methods for micro-transfer-printing," ed: Google Patents, 2017.
[25] X. Luo, R. Hu, S. Liu, K. J. P. i. E. Wang, and C. Science, "Heat and fluid flow in high-power LED packaging and applications," vol. 56, pp. 1-32, 2016.
[26] M. K. Kelly et al., "Optical patterning of GaN films," Applied physics letters, vol. 69, no. 12, pp. 1749-1751, 1996.
[27] M. K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh, and M. Stutzmann, "Optical process for liftoff of group III‐nitride films," physica status solidi, vol. 159, no. 1, pp. R3-R4, 1997.
[28] W. S. Wong, T. Sands, and N. W. Cheung, "Damage-free separation of GaN thin films from sapphire substrates," Applied Physics Letters, vol. 72, no. 5, pp. 599-601, 1998.
[29] Y. S. Wu, J.-H. Cheng, and W. C. Peng, "Effects of laser sources on the reverse-bias leakages of laser lift-off GaN-based light-emitting diodes," Applied physics letters, vol. 90, no. 25, p. 251110, 2007.
[30] J. Bohandy, B. F. Kim, and F. J. Adrian, "Metal deposition from a supported metal film using an excimer laser," Journal of Applied Physics, vol. 60, no. 4, pp. 1538-1539, 1986.
[31] B. A. J., H. Kim, N. A. Charipar, and A. Piqué, "Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices," Applied Physics A, vol. 99, no. 4, pp. 711-716, 2010.
[32] A. Pique, S. A. Mathews, R. C. Y. Auyeung, and B. P. Sood, "Laser-based technique for the transfer and embedding of electronic components and devices," ed: Google Patents, 2011.
[33] T. K. Ho, "Random decision forests," in Proceedings of 3rd international conference on document analysis and recognition, 1995, vol. 1, pp. 278-282: IEEE.
[34] L. Breiman, "Bagging predictors," Machine learning, vol. 24, no. 2, pp. 123-140, 1996.
[35] L. Breiman, "Random forests," Machine learning, vol. 45, no. 1, pp. 5-32, 2001.
[36] S. R. Safavian and D. Landgrebe, "A survey of decision tree classifier methodology," IEEE vol. 21, no. 3, pp. 660-674, 1991.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2019-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明