博碩士論文 106223064 詳細資訊

本論文永久網址:   


以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.145.111.199
姓名 詹識懷(Shih-Huai Chan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 增加一般式鈣鈦礦太陽能電池光電轉換效率與長時間穩定性的探討
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近幾年來,科學界對「有機-無機鈣鈦礦太陽能電池(PSC)」產生極大的關注,因為PSC製程簡單、材料價格便宜且具有高的光電轉換效率等優點。然而,若使用溶劑工程法製備鈣鈦礦膜,無法精準控制鈣鈦礦的結晶,所得膜有許多晶界(Grain boundary),影響所組裝之元件的光伏表現和長時間穩定性。本研究將「釕金屬染料(N749、CYK-17、CYK-18、CYK-19)、有機染料(BTI-3、BTI-19、INDT-1)」旋轉塗佈於鈣鈦礦膜的表面,填補鈣鈦礦膜表面的缺陷,並擴大其在長波長的吸光能力,增加元件的光電轉換效率與穩定性。但是上述七種染料修飾物,只有釕金屬染料(N749、CYK-17)與有機染料(BTI-19)修飾鈣鈦礦膜所組裝之元件的光電轉換效率,比未經染料修飾Psk膜之元件高出1%以上。從IR光譜圖看到,染料結構中的羧基(R-COOH)與硫氰酸根(SCN)的波數,有紅位移的現象。證明染料會與鈣鈦礦的鉛離子產生作用力。從接觸角得知,鈣鈦礦膜經染料修飾後的接觸角為(Psk/N749:75.6o、Psk/CYK-17:75.6o、Psk/BTI-19:78.8o)大於未經修飾之鈣鈦礦膜(Psk:56.5o),推得鈣鈦礦膜經染料修飾形成疏水的表面,減少水氣的吸附,延長鈣鈦礦膜的壽命。從光致螢光光譜圖得知,鈣鈦礦膜經染料修飾的螢光強度,皆比未經染料修飾的鈣鈦礦膜強。推得鈣鈦礦膜經染料修飾,能增加激子的生命期,減少電子與電洞發生再結合的機率。相較鈣鈦礦膜為吸收層所組裝之元件的光電轉換效率(17.70%),染料修飾鈣鈦礦膜組裝之元件的光電轉換效率(Psk/N749(cell):19.62%、Psk/CYK-17(cell):18.66%、Psk/BTI-19(cell):19.08%),並且將元件放置於大氣環境與手套箱中,皆比Psk(cell)有較好的穩定性。因此使用染料塗佈於鈣鈦礦膜組裝之元件,是同時增加元件效率和穩定性的有效方法。
摘要(英) Perovskite solar cells (PSCs) based on organic-inorganic hybrid lead halide perovskite absorber has attracted great attention from the new generation PV community. PSCs has the characteristics of simple process, cheap material, and high power conversion efficiency. However, perovskite film prepared with solvent engineering, the crystallization cannot be controlled precisely. As a result, the film has many grain boundaries which affect the photovoltaic performance and long-term stability of the resulting photovoltaic devices. In this study, several Ruthenium dyes (such as N749, CYK-17, CYK-18, CYK-19) and organic dyes (such as BTI-3, BTI-19, INDT-1) were spin-coated on the top of the perovskite film to remedy the defects on the surface of the perovskite film to enhance the efficiency and stability of the cells. Among the above seven dye modifications, only N749, CYK-17 (ruthenium dyes) and BTI-19 (organic dye) can increase the efficiency of the cell. IR spectra evidenced the shift of absorption peaks of the carboxyl group (R-COOH) and thiocyanate (SCN) in the dye molecule suggesting the interaction between dye molecules and Pb+2 in perovskite. The contact angle of the perovskite film increases after modifying with dye molecules (Psk : 56.5o, Psk/N749: 75.6o, Psk/CYK-17: 75.6o, Psk/BTI-19: 78.8o) to create more hydrophobic surface. Consequently, the stability of the modified perovskite film as well as the corresponding devices enhanced. The photoluminescence intensity and life-time proved that dye modification can increase the life of the exactions and reduce the charge recombination of the perovskite film. The efficiency of the cell based on unmodified perovskite is 17.70% which is smaller than those based on dye-modified perovskite solar cell (Psk/N749(cell) : 19.62%, Psk/CYK-17(cell) : 18.66%, Psk/BTI-19(cell) : 19.08%). Furthermore, the longer stability of the cell based on dye modified absorber is better than that used unmodified perovskite absorber both in ambient atmosphere and glove box.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 染料
關鍵字(英) ★ Perovskite Solar Cell
★ Dye
論文目次 目錄
摘要 I
ABSTRACT III
GRAPHICAL ABSTRACT V
謝誌 VI
目錄 VII
圖目錄 XIII
表目錄 XVIII
第一章、 緒論 1
1-1、 前言 1
1-2、 鈣鈦礦結構(Perovskite structure) 3
1-3、 鈣鈦礦太陽能電池(Perovskite solar cell, PSC) 5
1-3-1. 鈣鈦礦太陽能電池的架構 5
1-3-2. 一般式鈣鈦礦太陽能電池的工作原理 6
1-3-3. 鈣鈦礦太陽能電池的光電轉換效率 7
1-4、 鈣鈦礦太陽能電池之研究歷史 11
1-4-1. 第一個將鈣鈦礦材料應用於太陽能電池的文獻 11
1-4-2. 固態電解質應用於鈣鈦礦太陽能電池 12
1-5、 鈣鈦礦太陽能電池的研究方法 14
1-5-1. 以一步驟(Single-step)合成法製備鈣鈦礦吸光層 14
1-5-2. 以兩步驟(Two-step)合成法製備鈣鈦礦吸光層 15
1-5-3. 一步驟反溶劑處理法製備鈣鈦礦吸光層 16
1-6、 鈣鈦礦太陽能電池之吸光層材料 18
1-6-1. 二元陽離子之鈣鈦礦吸光層 18
1-7、 鈣鈦礦膜的優化 21
1-7-1. 添加高分子於鈣鈦礦起始溶液製備缺陷較少的鈣鈦礦膜 21
1-7-2. 添加雙功能陽離子(GABA+)製備穩定性較好的鈣鈦礦膜 22
1-7-3. (D35)染料敏化電子傳遞層(TiO2)製備高效率且穩定性較好的鈣鈦礦太陽能電池 24
1-7-4. 有機染料(AQ310)當作Anti-solvent製備缺陷較少的鈣鈦礦膜 25
1-7-5. 使用硫氰酸鹽修飾鈣鈦礦奈米粒子,減少晶體表面的缺陷 27
1-7-6. 有機分子修補鈣鈦礦膜表面的缺陷增加元件穩定性 29
1-8、 本研究所使用之染料分子的特性介紹 31
1-8-1. N749染料 31
1-8-2. CYK-17、CYK-18及CYK-19染料 33
1-8-3. BTI-3及BTI-19染料 36
1-8-4. INDT-1染料 38
1-9、 研究動機 39
第二章、 實驗方法 40
2-1、 實驗藥品與儀器 40
2-1-1. 藥品 40
2-1-2. 儀器設備 43
2-2、 一般式鈣鈦礦太陽能電池組裝步驟 44
2-2-1. 藥品的配製 44
2-2-2. 元件組裝步驟(如圖2-2-1所示) 47
2-3、 儀器分析 51
2-3-1. 太陽光模擬器及光電轉換效率量測(Solar Simulator, DENSO KXL-500F) 51
2-3-2. 掃描式電子顯微鏡(Scanning Electron Microscope, Hitachi S-800) 52
2-3-3. X-ray繞射光譜儀(X-Ray Diffractometer, BRUKER D8 Discover) 53
2-3-4. 熱蒸鍍系統(Thermal evaporation system, 高敦Thermal).. 54
2-3-5. 太陽能電池外部量子效率量測系統(Incident Photon to Current Conversion Efficiency (IPCE), Enlitech PVCS-I) 55
2-3-6. 光激發螢光光譜儀(Photoluminescence Spectrometer, Uni think Uni-RAM) 57
2-3-7. 傅立葉轉換紅外光光譜儀(Fourier transform infrared spectrometer, Jasco 4100) 58
2-3-8. 接觸角量測儀器(contact angle, Grandhand Ctag01) 59
2-3-9. UPS紫外光電子能譜儀(Ultraviolet photoelectron spectroscopy) 60
第三章、 結果與討論 61
3-1、 不同染料以不同方式修飾鈣鈦礦膜所組裝之元件 61
3-1-1. 篩選適合應用於鈣鈦礦表面處理之染料 63
3-1-2. 將(N749、CYK-17、CYK-18、CYK-19、BTI-3、BTI-19及INDT-1)染料配置成(0.1 mg/ml)修飾鈣鈦礦膜 63
3-1-3. 染料濃度的優化 65
3-1-4. 染料修飾鈣鈦礦膜所組裝之PSC元件的IPCE表現 67
3-1-5. 染料修飾鈣鈦礦膜所組裝之元件的電流遲滯現象 68
3-1-6. (N749、CYK-17、BTI-19)染料修飾鈣鈦礦膜所組裝之PSC元件的長時間穩定性 70
3-1-7. (CYK-18、CYK-19)染料修飾鈣鈦礦膜所組裝之PSC元件的長時間穩定性 72
3-1-8. 使用貼膠帶的方式製備電子傳遞層所組裝之元件的光伏表現 74
3-1-9. (CYK-17、CYK-17H)染料修飾鈣鈦礦膜組裝之元件的光伏表現 75
3-2、 染料修飾後之鈣鈦礦膜的光學性質與表面形貌 76
3-2-1. IR穿透光譜圖 76
3-2-2. 染料修飾後之鈣鈦礦膜的EDS圖 79
3-2-3. (N749)染料修飾後之鈣鈦礦膜的元素分析 81
3-2-4. (N749、CYK-17)染料修飾鈣鈦礦膜後經氯苯清洗之鈣鈦礦膜的EDS圖 82
3-2-5. 染料修飾後之鈣鈦礦膜的UV-vis吸收光譜圖 83
3-2-6. 染料修飾前後之鈣鈦礦膜的UV-VIS吸收光譜圖 84
3-2-7. 低濃度(1M)鈣鈦礦起始溶液製備鈣鈦礦膜經(N749)染料修飾後之鈣鈦礦膜的UV圖及所組裝之元件的IPCE圖 85
3-2-8. 染料修飾後之鈣鈦礦膜的前置軌域能階 87
3-2-9. 染料修飾後之鈣鈦礦膜的螢光光譜圖(PL)與瞬態吸收光譜圖(TRPL) 93
3-2-10. (CYK-18、BTI-3、INDT-1)染料修飾後之鈣鈦礦膜的螢光光譜圖(PL)與瞬態吸收光譜圖(TRPL) 95
3-2-11. 染料修飾後之鈣鈦礦膜的(SEM)表面形貌與剖面圖 98
3-2-12. 染料修飾後之鈣鈦礦膜的X-Ray繞射圖(XRD) 101
3-2-13. 染料修飾後之鈣鈦礦膜的接觸角 102
3-2-14. 染料修飾後之鈣鈦礦膜放置於大氣環境下的穩定性 103
3-2-15. N749染料修飾後之鈣鈦礦膜放置於大氣環境的X-Ray繞射圖 104
第四章、 結論 105
參考資料 106
附錄 111
附錄1. (CYC-33O、CYC-37、Y-1)染料修飾鈣鈦礦膜所組裝之元件的光伏表現 111
附錄2. (CYC-33O、CYC-37、Y-1)染料修飾後之鈣鈦礦膜的UV圖與所組裝之元件的IPCE圖 113
參考文獻 參考資料
【1】 https://en.wikipedia.org/wiki/Solar_cell
【2】 https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies (2019年8月2號)
【3】 Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai and Tsutomu Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J. Am. Chem. Soc., 2009, 131, 6050-6051
【4】 Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl, Arianna Marchioro, Soo-Jin Moon, Robin Humphry-Baker, Jun-Ho Yum, Jacques E. Moser, Michael Gra¨tzel & Nam-Gyu Park, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%”, Sci Rep, 2012, 2, 591.
【5】 https://en.wikipedia.org/wiki/Perovskite
【6】 Nam Joong Jeon, Hyejin Na, Eui Hyuk Jung, Tae-Youl Yang, Yong Guk Lee, Geunjin Kim, Hee-Won Shin, Sang Seok, Jaemin Lee and Jangwon Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells” Nature Energy, 2018, 7, 682-689
【7】 Wu-Qiang Wu, Zhibin Yang, Peter N. Rudd, Yuchuan Shao, Xuezeng Dai, Haotong Wei, Jingjing Zhao, Yanjun Fang, Qi Wang, Ye Liu, Yehao Deng, Xun Xiao, Yuanxiang Feng and Jinsong Huang, “Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells”, Science Advances, 2019, 3, 8925
【8】 Dong Shi, Valerio Adinolfi, Riccardo Comin, Mingjian Yuan, Erkki Alarousu, Andrei Buin, Yin Chen, Sjoerd Hoogland, Alexander Rothenberger, Khabiboulakh Katsiev, Yaroslav Losovyj, Xin Zhang, Peter A. Dowben, Omar F. Mohammed, Edward H. Sargent, Osman M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals”, Science, 2015, 347, 519-522
【9】 Zhaoning Song, Suneth C. Watthage, Adam B. Phillips, Michael J. Heben, “Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications”, J. Photon. Energy 6, 2016, 022001
【10】 Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, Tsutomu Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J. Am. Chem. Soc., 2009, 131, 6050-6051.
【11】 Chien-Hung Chiang, Jun-Wei Lin, Chun-Guey Wu, “One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module”, J. Mater. Chem. A, 2016, 4, 13525-13533.
【12】 Chien-Hung Chiang, Jun-Wei Lin, Chun-Guey Wu, “Planar Heterojunction Perovskite/ PC71BM Solar Cells with Efficiency Over 16% via (2/1)-step Spin-Coating Process”, J. Mater. Chem. A, 2014, 2, 15897-15903.
【13】 Chien-Hung Chiang, Mohammad Khaja Nazeeruddin, Michael Grätzelc, Chun-Guey Wu, “The synergistic effect of H2O and DMF toward stable and 20% efficiency inverted perovskite solar cells”, Energy Environ. Sci., 2017, 10, 808-817.
【14】 Nam Joong Jeon, Jun Hong Noh, Young Chan Kim, Woon Seok Yang, Seungchan Ryu, Sang Il Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells”, Nature Materials, 2014, 13, 897-903.
【15】 Chien-Hung Chiang, Chun-Guey Wu, “Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells”, ChemSusChem, 2016, 9, 2666-2672.
【16】 Gregor Kieslich, Shijing Suna, Anthony K. Cheetham, “An extended Tolerance Factor approach for organic–inorganic perovskites”, Chem. Sci., 2015, 6, 3430-3433
【17】 Miguel Anaya, Gabriel Lozano, Mauricio E. Calvo, Herna´n Mı´guez1, “ABX3 Perovskites for Tandem Solar Cells”, joule 1, 2017, 769-793
【18】 Min Hu, Linfeng Liu, Anyi Mei, Ying Yang, Tongfa Liu, Hongwei Han, “Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CHNH2PbI3” J. Mater. Chem. A, 2014, 2, 17115-17121
【19】 Luis K. Ono, Emilio J. Juarez-Perez, Yabing Qi, “Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions”, ACS Appl. Mater. Interfaces, 2017, 9, 36
【20】 Nam Joong Jeon, Jun Hong Noh, Woon Seok Yang, Young Chan Kim, Seungchan Ryu, Jangwon Seo & Sang Il Seok, “Compositional engineering of perovskite materials for high-performance solar cells”, Nature, 2015, 517, 476-480
【21】 Dongqin Bi, Wolfgang Tress, M. Ibrahim Dar, Peng Gao, Jingshan Luo, Clémentine Renevier, Kurt Schenk, Antonio Abate, Fabrizio Giordano, Juan-Pablo Correa Baena, Jean-David Decoppet, Shaik Mohammed Zakeeruddin, Mohammad Khaja Nazeeruddin, Michael Grätzel and Anders Hagfeldt “Efficient Luminescent Solar Cells Based on Tailored Mixed-Cation Perovskites”Sci. Adv. 2016, 2, 1501170
【22】 Dongqin Bi, Chenyi Yi, Jingshan Luo1, Jean-David Décoppet, Fei Zhang, Shaik Mohammed Zakeeruddin, Xiong Li, Anders Hagfeldt and Michael Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%”, Nature Energy, 2016, 9, 16142
【23】 Ting Qiu, Yanqiang Hu, Fan Bai, Xiaoliang Miao, Shufang Zhang, “Improved performance and stability of perovskite solar cells by incorporating gamma-aminobutyric acid in CH3NH3PbI3”, Journal of Materials Chemistry A, 2018, 6, 12370-12380
【24】 Nikolaos Balis, Alaa A. Zaky, Dorothea Perganti, Andreas Kaltzoglou, Lamprini Sygellou, Fotios Katsaros, Thomas Stergiopoulos, Athanassios G. Kontos, Polycarpos Falaras, “ Dye Sensitization of Titania Compact Layer for Efficient and Stable Perovskite Solar Cells ”, ACS Appl. Energy Mater, 2018, 1, 6161-6171
【25】 Xing Li, Chun‐Chao Chen, Molang Cai, Xin Hua, Fengxian Xie, Xiao Liu, Jianli Hua, Yi‐Tao Long, He Tian, Liyuan Han, “Efficient Passivation of Hybrid Perovskite Solar Cells Using Organic Dyes with COOH Functional Group”, Advanced Energy Materials, 2018, 7, 1800715
【26】 Brent A. Koscher, Joseph K. Swabeck, Noah D. Bronstein and A. Paul Alivisatos, “Essentially Trap-Free CsPbBr3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment”, J. Am. Chem. Soc., 2017, 139, 19, 6566-6569
【27】 Hao Zhang, Yongzhen Wu,Chao Shen, Erpeng Li, Chenxu Yan, Weiwei Zhang, He Tian, Liyuan Han, Wei‐Hong Zhu, “Efficient and Stable Chemical Passivation on Perovskite Surface via Bidentate Anchoring”, Advanced Energy Materials, 2019, 4, 1803573
【28】 Mohammad K. Nazeeruddin, Peter Pe´chy, Thierry Renouard, Shaik M. Zakeeruddin,Robin Humphry-Baker, Pascal Comte, Paul Liska, Le Cevey, Emiliana Costa,Valery Shklover, Leone Spiccia, Glen B. Deacon, Carlo A.Bignozzi, Michael Gra1tzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, J. Am. Chem. Soc., 2001, 123, 1613-1624
【29】 郭建育,「含聯噻吩的輔助配位基之釕金屬錯合物的合成與其在染料敏化太陽能電池上的應用」,國立中央大學,碩士論文,2019。
【30】 陳佑軒,「合成應用於染料敏化太陽能電池之藍色有機染料」,國立中央大學,碩士論文,2018。
【31】 陳映維,「尋找染料敏化太陽能電池之藍色染料」,國立中央大學,碩士論文,2016。
【32】 Zhen Li, Chuanxiao Xiao, Ye Yang, Steven P. Harvey, Dong Hoe Kim, Jeffrey A. Christians, Mengjin Yang, Philip Schulz, Sanjini U. Nanayakkara, Chun-Sheng Jiang, Joseph M. Luther, Joseph J. Berry, Matthew C. Beard, Mowafak M. Al-Jassim and Kai Zhu, “Extrinsic ion migration in perovskite solar cells”, Energy Environ. Sci., 2017, 10, 1234-1242
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2019-11-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明