所別: 資訊管理學系碩士班 丙組(一般生)

共6頁 第1頁

科目: 統計學

本科考試禁用計算器

*請在答案卷(卡)內作答

Part I. Answer the multiple-choice questions bellow and write down your answer in the answer sheet. (20%)

Note: Please refer to Appendix for the standardized normal probabilities that you may need for the following questions.

- 1. In a criminal trial, a Type II error is made when: (5%)
 - A. an innocent person is convicted.
 - B. a guilty defendant is acquitted.
 - C. a guilty defendant is convicted.
 - D. an innocent person is acquitted.
- 2. Suppose that the following observations drawn from a normal population whose standard deviation is 10. Test with $\alpha = 0.01$ to determine whether there is enough evidence to conclude that the population mean differs from 25. (5%)

4.6		~=		2.1					2.0
16	29	37	41	21	37	33	47	28	20

- A. Reject H_0 .
- B. Do not reject H_0 .
- C. Reject both H_0 and H_1 .
- D. None of the above is correct.

所別: 資訊管理學系碩士班 丙組(一般生)

共台頁 第2頁

科目: 統計學

本科考試禁用計算器

*請在答案卷(卡)內作答

Context for questions 3-4

Suppose the president of the Republic of China (Taiwan) wants to estimate the proportion of the population that supports her current policy toward Anti-infiltration Law. The president wants the estimate to be within 0.04 of the true proportion. Assume a 95% level of confidence. The president's political advisors found a similar survey from two months ago that reported that 60% of people supported Anti-infiltration Law.

- 3. How large of a sample is required? (5%)
 - A. 575.
 - B. 576.
 - C. 577.
 - D. 578.
- 4. How large of a sample would be necessary if no estimate were available for the proportion supporting current policy? (5%)
 - A. 600.
 - B. 601.
 - C. 602.
 - D. None of the above is correct.

所別: 資訊管理學系碩士班 丙組(一般生)

共<u>6</u>頁 第<u>3</u>頁

科目: 納

本科考試禁用計算器

*請在答案卷(卡)內作答

Part II. Please write down your answer in the answer sheet. (80%)

Note: In case the given data are not enough to compute the result, you may use well-defined symbols to represent. Please provide all the calculations steps and answers should be clearly displayed.

5. A sample of 20 software company in Taoyuan City revealed the following earning per share for the year 2019.

5	.4	4.6	3.5	2.8	2.6	5.5	5.5	2.3	3.2	4.2
4.	.0	3.0	3.6	4.5	4.7	4.2	3.3	3.2	4.2	3.4

- A. Please determine the coefficient of skewness and interpret it. (5%)
- B. Please determine the coefficient of kurtosis and interpret it. (5%)
- C. Please construct a box plot to represent these data. (5%)
- 6. A marketing director regularly conducts a survey of consumer decision making. The results of the latest survey indicate that approximately 1 in 5 potential buyers of a product see the given advertising on Facebook, and 1 in 50 sees a corresponding YouTube video ad. One in 100 sees both. Of those who purchase the good, 1 in 10 without seeing any ads. One in 3 actually purchases the product after seeing the ad.
 - A. What is the probability that a randomly selected potential customer will purchase the product? (5%)
 - B. What is the probability that a randomly selected non-purchaser had never seen the ad? (5%)

所別: 資訊管理學系 碩士班 丙組(一般生)

共6頁 第4頁

科目: 統計學

本科考試禁用計算器

*請在答案卷(卡)內作答

7. The following density function describe the random variable X.

$$f(x) = \begin{cases} ax + bx^2, & 0 \le x \le 1 \\ 0, & otherwise \end{cases} \text{ with } \mu = \frac{2}{3}$$

- A. Please find a and b. (5%)
- B. Please find the standard deviation and median of X. (10%)

Six independent observations are made on this variable X.

- C. What is the probability that at least four of the observations are greater than mean? (5%)
- 8. Automobiles arrive ate the Xinwu exit of Sun Yat-Sen Freeway at a mean rate of 20 per hour. The distribution of arrivals approximates a Poisson distribution.
 - A. What are the mean and variance of the waiting time for the fifth automobiles arrivals? (5%)
 - B. What is the probability that no automobiles arrive within three minutes? (5%)
- 9. Taiwanese consumers are increasingly viewing mobile payment as a convenient substitute for cash. The average amount spent annually on mobile payment is \$7,790. Assume that this average was based on a sample of 100 consumers and that the population standard deviation is \$500. (round to two decimal places)
 - A. A consumer advocate comments that the majority if consumers spend over \$8,000 on mobile payment. Determine whether this statement is true or false. (5%)
 - B. What is the interquartile range of this distribution? (5%)
 - C. Construct the 95% confidence interval for the population mean amount spent annually on mobile payment? (5%)

所別: 資訊管理學系碩士班 丙組(一般生)

共<u>6</u>頁 第<u>5</u>頁

科目: 統計學

本科考試禁用計算器

*請在答案卷(卡)內作答

10. Suppose the following statistics were calculated from data gathered from a randomized block experiment with five treatments and seven blocks. Please fill in the missing values in the following ANOVA Table. (round to four decimal places, 10%)

Source of Variation	SS	df	MS	F
Treatments		4		
Blocks	3,120	6		
Error			115	
Total	12,600	34		

所別: 資訊管理學系碩士班 丙組(一般生)

共<u>6</u>頁 第<u>6</u>頁

科目: 統計學

本科考試禁用計算器

*請在答案卷(卡)內作答

Appendix. Cumulative Standardized Normal Probabilities

		V									
روا	4	<u>v</u>									
	0 _R—∞< Z < 2)										
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.001	
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.001	
-2.8	0.0026	0:0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.001	
-2.7	0:0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.002	
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.003	
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.004	
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.006	
-2.3°	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.008	
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.011	
-2.1	0.0179	0.0174	0.01 <i>7</i> 0	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.014	
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.018	
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.023	
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.029	
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.036	
-i.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.045	
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.055	
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.068	
-1,3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.082	
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.098	
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.117	
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.137	
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.161	
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.186	
-0. <i>7</i> .	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.214	
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.245	
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.277	
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.312	
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.348	
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.385	
-0:1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.424	
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.464	

