參考文獻 |
1. Zhou, H. C.; Long, J. R.; Yaghi, O. M., Introduction to Metal-Organic Frameworks. Chemical reviews 2012, 112, 673-674.
2. Connolly, B. M., et al., Tuning Porosity in Macroscopic Monolithic Metal-Organic Frameworks for Exceptional Natural Gas Storage. Nature Communications 2019, 10, 2345.
3. Getman, R. B.; Bae, Y. S.; Wilmer, C. E.; Snurr, R. Q., Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal-Organic Frameworks. Chemical reviews 2012, 112, 703-723.
4. Li, J. R.; Sculley, J.; Zhou, H. C., Metal-Organic Frameworks for Separations. Chemical reviews 2012, 112, 869-932.
5. Bavykina, A.; Gascon, J., An Efficient Nanosieve. Nature Materials 2018, 17, 1057-1058.
6. Jonckheere, D.; Steele, J. A.; Claes, B.; Bueken, B.; Claes, L.; Lagrain, B.; Roeffaers, M. B. J.; De Vos, D. E., Adsorption and Separation of Aromatic Amino Acids from Aqueous Solutions Using Metal-Organic Frameworks. ACS Appl Mater Interfaces 2017, 9, 30064-30073.
7. Zhao, M.; Ou, S.; Wu, C. D., Porous Metal-Organic Frameworks for Heterogeneous Biomimetic Catalysis. Acc Chem Res 2014, 47, 1199-207.
8. Rahmani, E.; Rahmani, M., Al-Based Mil-53 Metal Organic Framework (Mof) as the New Catalyst for Friedel–Crafts Alkylation of Benzene. Industrial & Engineering Chemistry Research 2017, 57, 169-178.
9. Li, P., et al., Metal-Organic Frameworks with Photocatalytic Bactericidal Activity for Integrated Air Cleaning. Nature Communications 2019, 10, 2177.
10. Wu, M. X.; Yang, Y. W., Metal-Organic Framework (Mof)-Based Drug/Cargo Delivery and Cancer Therapy. Adv Mater 2017, 29.
11. Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G., Flexible Porous Metal-Organic Frameworks for a Controlled Drug Delivery. Journal of the American Chemical Society 2008, 130, 6774-80.
12. Li, X., et al., Fast and Selective Fluoride Ion Conduction in Sub-1-Nanometer Metal-Organic Framework Channels. Nature Communications 2019, 10, 2490.
13. Ahmed, H.; Rezk, A. R.; Richardson, J. J.; Macreadie, L. K.; Babarao, R.; Mayes, E. L. H.; Lee, L.; Yeo, L. Y., Acoustomicrofluidic Assembly of Oriented and Simultaneously Activated Metal–Organic Frameworks. Nature Communications 2019, 10, 2282.
14. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (Mofs): Routes to Various Mof Topologies, Morphologies, and Composites. Chemical reviews 2012, 112, 933-969.
15. Liu, W.-G.; Truhlar, D. G., Computational Linker Design for Highly Crystalline Metal–Organic Framework Nu-1000. Chemistry of Materials 2017, 29, 8073-8081.
16. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P., A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society 2008, 130, 13850-1.
17. Garibay, S. J.; Cohen, S. M., Isoreticular Synthesis and Modification of Frameworks with the Uio-66 Topology. Chemical communications 2010, 46, 7700-2.
18. Piscopo, C. G.; Polyzoidis, A.; Schwarzer, M.; Loebbecke, S., Stability of Uio-66 under Acidic Treatment: Opportunities and Limitations for Post-Synthetic Modifications. Microporous and Mesoporous Materials 2015, 208, 30-35.
19. Cao, Y.; Zhang, H.; Song, F.; Huang, T.; Ji, J.; Zhong, Q.; Chu, W.; Xu, Q., Uio-66-Nh(2)/Go Composite: Synthesis, Characterization and Co(2) Adsorption Performance. Materials (Basel) 2018, 11, 589-604.
20. Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P., Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals. Chemistry 2011, 17, 6643-6651.
21. Bai, Y.; Dou, Y.; Xie, L. H.; Rutledge, W.; Li, J. R.; Zhou, H. C., Zr-Based Metal-Organic Frameworks: Design, Synthesis, Structure, and Applications. Chemical Society reviews 2016, 45, 2327-2367.
22. Hu, Z.; Castano, I.; Wang, S.; Wang, Y.; Peng, Y.; Qian, Y.; Chi, C.; Wang, X.; Zhao, D., Modulator Effects on the Water-Based Synthesis of Zr/Hf Metal–Organic Frameworks: Quantitative Relationship Studies between Modulator, Synthetic Condition, and Performance. Crystal Growth & Design 2016, 16, 2295-2301.
23. Cantu, D. C.; McGrail, B. P.; Glezakou, V.-A., Formation Mechanism of the Secondary Building Unit in a Chromium Terephthalate Metal–Organic Framework. Chemistry of Materials 2014, 26, 6401-6409.
24. Hu, Z.; Peng, Y.; Kang, Z.; Qian, Y.; Zhao, D., A Modulated Hydrothermal (Mht) Approach for the Facile Synthesis of Uio-66-Type Mofs. Inorg Chem 2015, 54, 4862-8.
25. Han, Y.; Li, J. R.; Xie, Y.; Guo, G., Substitution Reactions in Metal-Organic Frameworks and Metal-Organic Polyhedra. Chemical Society reviews 2014, 43, 5952-81.
26. Cohen, S. M., Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks. Chemical reviews 2012, 112, 970-1000.
27. Kim, M.; Cahill, J. F.; Su, Y.; Prather, K. A.; Cohen, S. M., Postsynthetic Ligand Exchange as a Route to Functionalization of ‘Inert’ Metal–Organic Frameworks. Chem. Sci. 2012, 3, 126-130.
28. Guillerm, V.; Gross, S.; Serre, C.; Devic, T.; Bauer, M.; Ferey, G., A Zirconium Methacrylate Oxocluster as Precursor for the Low-Temperature Synthesis of Porous Zirconium(Iv) Dicarboxylates. Chemical communications 2010, 46, 767-9.
29. Huang, Y. H.; Lo, W. S.; Kuo, Y. W.; Chen, W. J.; Lin, C. H.; Shieh, F. K., Green and Rapid Synthesis of Zirconium Metal-Organic Frameworks Via Mechanochemistry: Uio-66 Analog Nanocrystals Obtained in One Hundred Seconds. Chemical communications 2017, 53, 5818-5821.
30. Gross, A. F.; Sherman, E.; Mahoney, S. L.; Vajo, J. J., Reversible Ligand Exchange in a Metal-Organic Framework (Mof): Toward Mof-Based Dynamic Combinatorial Chemical Systems. The journal of physical chemistry. A 2013, 117, 3771-6.
31. Taddei, M.; Wakeham, R. J.; Koutsianos, A.; Andreoli, E.; Barron, A. R., Post-Synthetic Ligand Exchange in Zirconium-Based Metal-Organic Frameworks: Beware of the Defects! Angew Chem Int Ed Engl 2018, 57, 11706-11710.
32. Smolders, S.; Struyf, A.; Reinsch, H.; Bueken, B.; Rhauderwiek, T.; Mintrop, L.; Kurz, P.; Stock, N.; De Vos, D. E., A Precursor Method for the Synthesis of New Ce(Iv) Mofs with Reactive Tetracarboxylate Linkers. Chemical communications 2018, 54, 876-879.
33. Kim, M.; Cahill, J. F.; Fei, H.; Prather, K. A.; Cohen, S. M., Postsynthetic Ligand and Cation Exchange in Robust Metal-Organic Frameworks. Journal of the American Chemical Society 2012, 134, 18082-18088.
34. Puchberger, M.; Kogler, F. R.; Jupa, M.; Gross, S.; Fric, H.; Kickelbick, G.; Schubert, U., Can the Clusters Zr6o4(Oh)4(Oocr)12 and [Zr6o4(Oh)4(Oocr)12]2 Be Converted into Each Other? European Journal of Inorganic Chemistry 2006, 2006, 3283-3293.
35. Kogler, F. R.; Jupa, M.; Puchberger, M.; Schubert, U., Control of the Ratio of Functional and Non-Functional Ligands in Clusters of the Type Zr6o4(Oh)4(Carboxylate)12for Their Use as Building Blocks for Inorganic–Organic Hybrid Polymers. J. Mater. Chem. 2004, 14, 3133-3138.
36. Delley, B., From Molecules to Solids with the Dmol3 Approach. The Journal of Chemical Physics 2000, 113, 7756-7764.
37. Inc., A. S. Material Studio, 7; San Diego, 2013.
38. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys Rev Lett 1996, 77, 3865-3868.
39. Delley, B., Hardness Conserving Semilocal Pseudopotentials. Physical Review B 2002, 66.
40. Andzelm, J.; Kolmel, C.; Klamt, A., Incorporation of Solvent Effects into Density-Functional Calculations of Molecular-Energies and Geometries. J Chem Phys 1995, 103, 9312-9320.
41. Kickelbick, G.; Schubert, U., Oxozirconium Methacrylate Clusters: Zr6(OH)4O4(OMc)12 and Zr4O2(OMc)12 (OMc = Methacrylate). Chemische Berichte 1997, 130, 473-478.
42. Liu, C.; Li, G.; Hensen, E. J. M.; Pidko, E. A., Relationship between Acidity and Catalytic Reactivity of Faujasite Zeolite: A Periodic Dft Study. Journal of Catalysis 2016, 344, 570-577.
43. E. P. Serjeant, B. D., Ionization Constants of Organic Acids in Aqueous Solution; Pergamon Press: Oxford, 1979.
44. Wegscheider, R., Untersuchungen uber Die Veresterung Unsymmetrischer Zwei- Und Mehrbasischer Sauren. Monatshefte fur Chemie 1902, 23, 357-368.
45. Kuriyama, I.; Nakajima, Y.; Nishida, H.; Konishi, T.; Takeuchi, T.; Sugawara, F.; Yoshida, H.; Mizushina, Y., Inhibitory Effects of Low Molecular Weight Polyphenolics from Inonotus Obliquus on Human DNA Topoisomerase Activity and Cancer Cell Proliferation. Mol Med Rep 2013, 8, 535-542.
46. Mangiatordi, G. F.; Brémond, E.; Adamo, C., Dft and Proton Transfer Reactions: A Benchmark Study on Structure and Kinetics. Journal of Chemical Theory and Computation 2012, 8, 3082-3088.
47. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6595-6663.
48. Wöhrle, D.; Meissner, D., Organic Solar Cells. Adv. Mater. 1991, 3, 129-138.
49. Smestad, G. P., Optoelectronics of Solar Cells; Spie Press, 2002; Vol. 115, p 118.
50. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Gratzel, M., Combined Experimental and Dft-Tddft Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. J. Am. Chem. Soc. 2005, 127, 16835-47.
51. You, J., et al., A Polymer Tandem Solar Cell with 10.6% Power Conversion Efficiency. Nat Commun 2013, 4, 1446.
52. Tseng, C. Y.; Taufany, F.; Nachimuthu, S.; Jiang, J. C.; Liaw, D. J., Design Strategies of Metal Free-Organic Sensitizers for Dye Sensitized Solar Cells: Role of Donor and Acceptor Monomers. Org. Electron. 2014, 15, 1205-1214.
53. Xu, W.; Peng, B.; Chen, J.; Liang, M.; Cai, F., New Triphenylamine-Based Dyes for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2008, 112, 874-880.
54. Liu, B.; Wu, W.; Li, X.; Li, L.; Guo, S.; Wei, X.; Zhu, W.; Liu, Q., Molecular Engineering and Theoretical Investigation of Organic Sensitizers Based on Indoline Dyes for Quasi-Solid State Dye-Sensitized Solar Cells. Phys. Chem. Chem. Phys. 2011, 13, 8985-92.
55. Wu, Y.; Zhu, W. H.; Zakeeruddin, S. M.; Gratzel, M., Insight into D-A-π-A Structured Sensitizers: A Promising Route to Highly Efficient and Stable Dye-Sensitized Solar Cells. ACS Appl Mater Interfaces 2015, 7, 9307-18.
56. Wang, X., et al., A Benzothiazole-Cyclopentadithiophene Bridged D-A-π-A Sensitizer with Enhanced Light Absorption for High Efficiency Dye-Sensitized Solar Cells. Chem. Commun. 2014, 50, 3965-3968.
57. Gao, Y.; Li, X.; Hu, Y.; Fan, Y.; Yuan, J.; Robertson, N.; Hua, J.; Marder, S. R., Effect of an Auxiliary Acceptor on D-A-π-A Sensitizers for Highly Efficient and Stable Dye-Sensitized Solar Cells. J. Mater. Chem. A 2016, 4, 12865-12877.
58. Abe, M.; Adam, W.; Heidenfelder, T.; Nau, W. M.; Zhang, X., Intramolecular and Intermolecular Reactivity of Localized Singlet Diradicals: the Exceedingly Long-Lived 2,2-Diethoxy-1,3-Diphenylcyclopentane-1,3-Diyl. J. Am. Chem. Soc. 2000, 122, 2019-2026.
59. Adam, W., et al., Transient Spectroscopy of a Derivative of 2,2-Difluoro-1,3-Diphenylcyclopentane-1,3-Diyla Persistent Localized Singlet 1,3-Diradical. J. Am. Chem. Soc. 1998, 120, 593-594.
60. Sauvage, F.; Chen, D.; Comte, P.; Huang, F.; Heiniger, L. P.; Cheng, Y. B.; Caruso, R. A.; Graetzel, M., Dye-Sensitized Solar Cells Employing a Single Film of Mesoporous Tio2 Beads Achieve Power Conversion Efficiencies over 10%. ACS Nano 2010, 4, 4420-5.
61. He, J.; Wu, W.; Hua, J.; Jiang, Y.; Qu, S.; Li, J.; Long, Y.; Tian, H., Bithiazole-Bridged Dyes for Dye-Sensitized Solar Cells with High Open Circuit Voltage Performance. J. Mater. Chem. 2011, 21, 6054.
62. Zhu, W.; Wu, Y.; Wang, S.; Li, W.; Li, X.; Chen, J.; Wang, Z.-s.; Tian, H., Organic D-A-π-A Solar Cell Sensitizers with Improved Stability and Spectral Response. Adv. Funct. Mater. 2011, 21, 756-763.
63. Mao, J.; Guo, F.; Ying, W.; Wu, W.; Li, J.; Hua, J., Benzotriazole-Bridged Sensitizers Containing a Furan Moiety for Dye-Sensitized Solar Cells with High Open-Circuit Voltage Performance. Chem. Asian J. 2012, 7, 982-91.
64. Ci, Z.; Yu, X.; Bao, M.; Wang, C.; Ma, T., Influence of the Benzo[D]Thiazole-Derived π-Bridges on the Optical and Photovoltaic Performance of D-π-A Dyes. Dyes Pigm. 2013, 96, 619-625.
65. Pei, K.; Wu, Y.; Wu, W.; Zhang, Q.; Chen, B.; Tian, H.; Zhu, W., Constructing Organic D-A-π-A Featured Sensitizers with a Quinoxaline Unit for High-Efficiency Solar Cells: The Effect of an Auxiliary Acceptor on the Absorption and the Energy Level Alignment. Chemistry - A European Journal 2012, 18, 8190-8200.
66. Ying, W. J.; Yang, J. B.; Wielopolski, M.; Moehl, T.; Moser, J. E.; Comte, P.; Hua, J. L.; Zakeeruddin, S. M.; Tian, H.; Gratzel, M., New Pyrido[3,4-B] Pyrazine-Based Sensitizers for Efficient and Stable Dye-Sensitized Solar Cells. Chemical Science 2014, 5, 206-214.
67. Wu, Y.; Zhu, W., Organic Sensitizers from D-π-A to D-A-π-A: Effect of the Internal Electron-Withdrawing Units on Molecular Absorption, Energy Levels and Photovoltaic Performances. Chem. Soc. Rev. 2013, 42, 2039-58.
68. Kusama, H.; Orita, H.; Sugihara, H., Tio2 Band Shift by Nitrogen-Containing Heterocycles in Dye-Sensitized Solar Cells: A Periodic Density Functional Theory Study. Langmuir 2008, 24, 4411-9.
69. Li, W.; Wu, Y.; Zhang, Q.; Tian, H.; Zhu, W., D-A-π-A Featured Sensitizers Bearing Phthalimide and Benzotriazole as Auxiliary Acceptor: Effect on Absorption and Charge Recombination Dynamics in Dye-Sensitized Solar Cells. ACS Appl Mater Interfaces 2012, 4, 1822-30.
70. Frisch, M. J., et al., Gaussian, Inc., Wallingford CT 2009.
71. Becke, A. D., Density‐Functional Thermochemistry. Iii. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648-5652.
72. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B: Condens. Matter 1988, 37, 785-789.
73. Petersson, G. A.; Al‐Laham, M. A., A Complete Basis Set Model Chemistry. Ii. Open‐Shell Systems and the Total Energies of the First‐Row Atoms. J. Chem. Phys. 1991, 94, 6081-6090.
74. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, Structures, and Electronic Properties of Molecules in Solution with the C-Pcm Solvation Model. J. Comput. Chem. 2003, 24, 669-681.
75. Yanai, T.; Tew, D. P.; Handy, N. C., A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (Cam-B3lyp). Chem. Phys. Lett. 2004, 393, 51-57.
76. Yakhanthip, T.; Jungsuttiwong, S.; Namuangruk, S.; Kungwan, N.; Promarak, V.; Sudyoadsuk, T.; Kochpradist, P., Theoretical Investigation of Novel Carbazole-Fluorene Based D-π-A Conjugated Organic Dyes as Dye-Sensitizer in Dye-Sensitized Solar Cells (Dscs). J. Comput. Chem. 2011, 32, 1568-1576.
77. Zhang, L.; Cole, J. M., Anchoring Groups for Dye-Sensitized Solar Cells. ACS Appl Mater Interfaces 2015, 7, 3427-55.
78. M, B.; G, G.; M, R.; F, P.; J, P.; M, P.; H, L., Newton-X: A Package for Newtonian Dynamics Close to the Crossing Seam. 2011, www.newtonx.org.
79. Barbatti, M.; Ruckenbauer, M.; Plasser, F.; Pittner, J.; Granucci, G.; Persico, M.; Lischka, H., Newton-X: A Surface-Hopping Program for Nonadiabatic Molecular Dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science 2014, 4, 26-33.
80. Barbatti, M.; Granucci, G.; Persico, M.; Ruckenbauer, M.; Vazdar, M.; Eckert-Maksić, M.; Lischka, H., The on-the-Fly Surface-Hopping Program System Newton-X: Application to Ab Initio Simulation of the Nonadiabatic Photodynamics of Benchmark Systems. Journal of Photochemistry and Photobiology A: Chemistry 2007, 190, 228-240.
81. Crespo-Otero, R.; Barbatti, M., Spectrum Simulation and Decomposition with Nuclear Ensemble: Formal Derivation and Application to Benzene, Furan and 2-Phenylfuran. Theor. Chem. Acc. 2012, 131.
82. Andersen, H. C., Molecular Dynamics Simulations at Constant Pressure and/or Temperature. J. Chem. Phys. 1980, 72, 2384-2393.
83. Tanaka, H.; Nakanishi, K.; Watanabe, N., Constant Temperature Molecular Dynamics Calculation on Lennard‐Jones Fluid and Its Application to Watera). J. Chem. Phys. 1983, 78, 2626-2634.
84. Pittner, J.; Lischka, H.; Barbatti, M., Optimization of Mixed Quantum-Classical Dynamics: Time-Derivative Coupling Terms and Selected Couplings. Chem. Phys. 2009, 356, 147-152.
85. Hammes‐Schiffer, S.; Tully, J. C., Proton Transfer in Solution: Molecular Dynamics with Quantum Transitions. J. Chem. Phys. 1994, 101, 4657-4667.
86. Butcher, J. C., A Modified Multistep Method for the Numerical Integration of Ordinary Differential Equations. Journal of the ACM 1965, 12, 124-135.
87. Sun, L., et al., Molecular Engineering of Organic Sensitizers for Dye-Sensitized Solar Cell Applications. J. Am. Chem. Soc. 2008, 130, 6259-6266.
88. Liu, B.; Zhu, W.; Zhang, Q.; Wu, W.; Xu, M.; Ning, Z.; Xie, Y.; Tian, H., Conveniently Synthesized Isophorone Dyes for High Efficiency Dye-Sensitized Solar Cells: Tuning Photovoltaic Performance by Structural Modification of Donor Group in Donor-π-Acceptor System. Chem. Commun. 2009, 1766-8.
89. Ning, Z.; Zhang, Q.; Wu, W.; Pei, H.; Liu, B.; Tian, H., Starburst Triarylamine Based Dyes for Efficient Dye-Sensitized Solar Cells. J. Org. Chem. 2008, 73, 3791-7.
90. Mishra, A.; Fischer, M. K. R.; Bauerle, P., Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules. Angew. Chem. Int. Ed. 2009, 48, 2474-2499.
91. Velusamy, M.; Justin Thomas, K. R.; Lin, J. T.; Hsu, Y. C.; Ho, K. C., Organic Dyes Incorporating Low-Band-Gap Chromophores for Dye-Sensitized Solar Cells. Org. Lett. 2005, 7, 1899-902.
92. Hou, J.; Chen, H. Y.; Zhang, S.; Li, G.; Yang, Y., Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole. J. Am. Chem. Soc. 2008, 130, 16144-5.
93. Li, W.; Du, C.; Li, F.; Zhou, Y.; Fahlman, M.; Bo, Z.; Zhang, F., Benzothiadiazole-Based Linear and Star Molecules: Design, Synthesis, and Their Application in Bulk Heterojunction Organic Solar Cells. Chem. Mater. 2009, 21, 5327-5334.
94. Beaujuge, P. M.; Pisula, W.; Tsao, H. N.; Ellinger, S.; Mullen, K.; Reynolds, J. R., Tailoring Structure-Property Relationships in Dithienosilole-Benzothiadiazole Donor-Acceptor Copolymers. J. Am. Chem. Soc. 2009, 131, 7514-5.
95. Tang, Z. M.; Lei, T.; Jiang, K. J.; Song, Y. L.; Pei, J., Benzothiadiazole Containing D-π-A Conjugated Compounds for Dye-Sensitized Solar Cells: Synthesis, Properties, and Photovoltaic Performances. Chem. Asian J. 2010, 5, 1911-7.
96. Zhang, Z.; Peng, B.; Liu, B.; Pan, C.; Li, Y.; He, Y.; Zhou, K.; Zou, Y., Copolymers from Benzodithiophene and Benzotriazole: Synthesis and Photovoltaic Applications. Polymer Chemistry 2010, 1, 1441.
97. Chang, Y. J.; Chow, T. J., Dye-Sensitized Solar Cell Utilizing Organic Dyads Containing Triarylene Conjugates. Tetrahedron 2009, 65, 4726-4734.
98. De Angelis, F.; Fantacci, S.; Mosconi, E.; Nazeeruddin, M. K.; Grätzel, M., Absorption Spectra and Excited State Energy Levels of the N719 Dye on Tio2 in Dye-Sensitized Solar Cell Models. J. Phys. Chem. C 2011, 115, 8825-8831.
99. Pastore, M.; Fantacci, S.; De Angelis, F., Modeling Excited States and Alignment of Energy Levels in Dye-Sensitized Solar Cells: Successes, Failures, and Challenges. J. Phys. Chem. C 2013, 117, 3685-3700. |