博碩士論文 105421007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.145.111.116
姓名 劉飛白(Fei-Pai Liu)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 考量碳排放量及時窗限制的城市物流計劃方法
(A Planning Method for City Logistics Considering Carbon Emission and Time Windows)
相關論文
★ 企業流程為核心的食品產業運籌體系規劃:低溫物流部份★ 以企業流程方法規劃整體飛航後勤維修體系之研究
★ 成衣產業導入ERP運籌管理方案之個案研究★ 光電產業試產基地之生產最佳化模式:以光投影機為例
★ TFT LCD產業獲利因素之探討★ 科技事業進行合併/讓售之決策過程與成效之個案探討
★ 企業治理、風險及遵循解決方案導入之個案研究-以職責分離資訊系統為例★ 品質機能展開與多準則決策於設備開發應用
★ ERP導入品質因素對IFRS轉換專案之影響★ ERP投資金額對服務品質及導入後IT治理目標之分析
★ ERP 導入問題對專案的影響★ IFRS轉換對員工退休金計畫影響
★ IFRS轉換問題對IFRS效益的影響★ 電子產業新產品開發參考模式之發展
★ 應用資料科學方法提昇國防裝備可靠度之研究-以防空系統為例★ 企業資訊方案行銷歷程之探討-以MES為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來隨著全球暖化的加劇,環保及永續發展的議題持續受到各國政府與企業的重視。儘管城市物流是支持實體經濟以及虛擬經濟的後端基礎,但其中的貨物運輸對環境產生的負面影響甚鉅,如運輸過程中燃料的消耗及溫室氣體的排放等,且貨物運輸造成的交通壅塞及空氣汙染亦會使城市居住品質下降。此外,隨著及時制度(Just-in-time)及電子商務的重要性日益增加,顧客對於貨物送達時間的要求也越趨嚴格。因此,一個能最小化環境影響並滿足顧客時窗(Time windows)要求的綠色物流(Green logistics)規劃模型是必須的。
本研究提出了一個基於車輛途程問題(Vehicle routing problem)的綠色城市物流模型,規劃目標為在滿足顧客的貨物需求及時窗需求的情況之下,最小化所有送貨車輛的碳排放量。模型中除了考量車輛行駛時所產生的碳排放,更考量了車輛在顧客位置等待時所產生的閒置碳排放,使本研究的規劃模型能適用於運送時需進行溫度控管的貨物上。本研究亦針對此模型提出一個啟發式演算法,並帶入包含100個節點的模擬案例中,與傳統僅以行駛距離、行駛時間作為規劃目標的演算法比較,最後得到本研究的演算法在綠色目標、經濟目標上皆優於傳統演算法的結果。
摘要(英) Following the concern of global warming in recent years, the issues of environmental protection and sustainability have been receiving increasing attention from both governments and businesses. City logistics is the foundation of economy; however, its freight transportation has a considerable negative impact on the environment due to fuel consumptions and greenhouse gas emissions. Freight transportation also causes traffic congestion and air pollution, which may lead to a decrease in the quality of life of urban residents. Furthermore, the growing significance of just-in-time production and e-commerce contributes to the need of satisfying the customers’ increasing demand for shorter delivery time windows. Therefore, the necessity of a green logistics planning model that enables the minimization of the environmental impact and facilitates the adherence to these time windows is evident.
The present research proposes a green city logistics planning model based on the vehicle routing problem (VRP). The goal is to minimize the carbon emissions of all delivery vehicles, on the condition of fulfilling the customers’ demands for goods and adhering to time windows. The model not only considers the emissions of vehicles in motion (hot emissions) but also the emissions of vehicles under idling (idle emissions). Therefore, this model can be applied to cases where a control of the temperature of goods is required. In addition, this research proposes a heuristic algorithm for the model and uses it to solve the benchmark problems with 100 nodes. Lastly, the solution of the created algorithm is compared with the one of a traditional VRP algorithm. The results of this comparison show that the algorithm developed during the present research performs better in both environmental and economic terms.
關鍵字(中) ★ 綠色物流
★ 車輛途程問題
★ 時窗
★ 閒置碳排放
關鍵字(英) ★ Green logistics
★ Vehicle routing problem
★ Time windows
★ Idle emission
論文目次 摘要 i
ABSTRACT ii
目錄 iii
圖目錄 v
表目錄 vi
1. 緒論 1
1.1. 研究動機與目的 1
1.2. 研究範圍與步驟 2
2. 文獻回顧 3
2.1. 問題陳述 3
2.2. 車輛途程問題 5
2.2.1. 容量限制車輛途程問題 6
2.2.2. 兩階層容量限制車輛途程問題 6
2.2.3. 含時窗的車輛途程問題 8
2.2.4. 時間相依車輛途程問題 10
2.3. 綠色車輛途程問題 11
2.3.1. 逆物流車輛途程問題 12
2.3.2. 能源消耗車輛途程問題 12
2.3.3. 汙染途程問題 14
3. 問題定義 16
3.1. 含時窗的綠色城市物流模型 16
3.2. 路段行駛時間計算 20
3.3. 碳排放量計算 25
4. 方法發展 32
4.1. 輔助演算法 32
4.2. 途程建構演算法 39
4.3. 途程改善演算法 44
4.4. 出發時間調整演算法 49
5. 演算法操作 55
5.1. 碳排放量計算演算法操作 55
5.2. 輔助演算法操作 61
5.3. 途程建構演算法操作 70
5.4. 途程改善演算法操作 76
5.5. 出發時間調整演算法操作 87
6. 數值例驗證 96
6.1. 實驗案例發展 96
6.2. 演算法各階段驗證 99
6.3. 與傳統VRPHTW規劃方法之比較 102
6.4. 驗證結果分析 110
7. 結論與後續研究 112
7.1. 結論 112
7.2. 後續研究議題 112
參考文獻 114
參考文獻 American Transportation Research Institute. (2018). Cost of Congestion to the Trucking Industry: 2018 Update. Retrieved August 6, 2019, from https://atri-online.org/wp-content/uploads/2018/10/ATRI-Cost-of-Congestion-to-the-Trucking-Industry-2018-Update-10-2018.pdf.

Bektaş, T., & Laporte, G. (2011). The pollution-routing problem. Transportation Research Part B, 45, 1232-1250.

Bräysy, O., & Gendreau, M. (2005). Vehicle routing problem with time windows, Part I: route construction and local search algorithms. Transportation Science, 39(1), 104-118.

Clarke, G., & Wright, J.W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12(4), 568-581.

Cordeau, J. F., Laporte, G., Savelsbergh, M. W. P., & Vigo, D. (2007). Vehicle routing. In C. Barnhart & G.
Laporte (Eds.), Transportation (Vol. 14, pp. 367–428). Amsterdam: Elsevier.

Crainic, T.G., Ricciardi, N., & Storchi, G. (2009). Models for evaluating and planning city logistics transportation systems. Transportation Science, 43(4), 432-454.

Crainic, T.G., Ricciardi, N., & Storchi, G. (2009). Models for evaluating and planning city logistics transportation systems. Transportation Science, 43(4), 432-454.

Dantzig, G.B., & Ramer, J.H. (1959). The truck dispatching problem. Management Science, 6, 80-91.

Figliozzi, M.A. (2010). An iterative route construction and improvement algorithm for the vehicle routing problem with soft time windows. Transportation Research Part C, 18, 668-679.

Figliozzi, M.A. (2012). The time dependent vehicle routing problem with time windows: Benchmark problems, an efficient solution algorithm, and solution characteristics, Transportation Research Part E, 48, 616-636.

Hickman, A.J., Hassel, D., Joumard, R., Samaras, Z., & Sorenson, S. (1999). Methodology for calculating transport emissions and energy consumption. Berkshire, U.K.: Transport Research Laboratory.

Huang, Y., Zhao, L., Woensel, T.V., & Gross, J.P. (2017). Time-dependent vehicle routing problem with path flexibility. Transportation Research Part B, 95, 169-195.

Ichoua, S., Gendreau, M., & Potvin, J.Y. (2003). Vehicle dispatching with time-dependent travel times. European Journal of Operational Research, 144, 379-396.

Jepson, M., Spoorendonk, S., & Ropke, S. (2013). A branch-and-cut algorithm for the symmetric two-echelon capacitated vehicle routing problem. Transportation Science, 47(1), 23-37.

Keskin, M., & Çatay, B. (2016). Partial recharge strategies for the electric vehicle routing problem with time windows. Transportation Research Part C, 65, 111-127.

Lecluyse, C., Sörensen, K., & Peremans, H. (2013). A network-consistent time-dependent travel time layer for routing optimization problems. European Journal of Operational Research, 226, 395-413.

Lin, C., Choy, K.L., Ho, G.T.S., Chung, S.H. & Lam, H.Y. (2014). Survey of green vehicle routing problem: Past and future trends. Expert Systems with Applications, 41, 1118-1138.

Malandraki, C., & Daskin, M.S. (1992). Time dependent vehicle routing problems: Formulations, properties and heuristic algorithms. Transportation Science, 26(3), 185-200.

Montoya-Torres, J.R., Franco, J.L., Isaza, S.N., Jiménez, H.F., & Herazo-Padilla, N. (2015). A literature review on the vehicle routing problem with multiple depots. Computers & Industrial Engineering, 79, 115-129.

Perboli G., Tadei, R., & Vigo, D. (2011). The two-echelon capacitated vehicle routing problem: models and math-based heuristics, Transportation Science, 45(3), 364-380.

Pillac, V., Gendreau, M., Guéret, C., & Medaglia, A.L. (2013). A review of dynamic vehicle routing problems. European Journal of Operational Research, 225, 1-11.

Qian, J., & Eglese, R. (2016). Fuel emissions optimization in vehicle routing problems with time-varying speeds. European Journal of Operational Research, 248, 840-848.

Sbihi, A., & Eglese, R.W. (2007). Combinatorial optimization and green logistics. 4OR: A Quarterly Journal of Operational Research, 5(2), 99-116.

Solomon, M.M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operational Research, 35(2), 254-265.

Taniguchi, E., Thompson, R.G., Yamada, T., & van Duin, R. (2001). City logistics: network modelling and intelligent transport systems. Oxford, U.K.: Elsevier Science.

Ubeda, S., Arcelus, F.J., & Faulin, J. (2011). Green logistics at Eroski: A case study. International Journal of Production Economics, 131, 44-51.

United Nations. (2018). World urbanization prospects: the 2018 revision. Population Divisions, Department of Economic and Social Affairs, United Nations.

United Nations Framework Convention on Climate Change. (2015). Adoption of the Paris Agreement, FCCC/CP/2015/L.9/Rev.1. Retrieved August 23, 2018, from http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf

United States Environmental Protection Agency. (2002). Study of Exhaust Emissions from Idling Heavy-Duty Diesel Trucks and Commercially Available Idle-Reducing Devices. Washington, D.C., U.S.: National Service Center for Environmental Publications.

United States Environmental Protection Agency. (2018). Inventory of U.S. greenhouse gas emissions and sinks: 1990-2016. Washington, D.C., U.S.: National Service Center for Environmental Publications.
指導教授 呂俊德(Jun-Der Leu) 審核日期 2020-1-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明