博碩士論文 107426037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.138.138.202
姓名 陳勲(Shiun Chen)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 以最大熵原理分析SAN系統中的逆問題
(Inverse Problem In SAN Using Principle Of Maximum Entropy)
相關論文
★ 應用失效模式效應分析於產品研發時程之改善★ 服務品質因子與客戶滿意度關係研究-以汽車保修廠服務為例
★ 家庭購車決策與行銷策略之研究★ 計程車車隊派遣作業之研究
★ 電業服務品質與服務失誤之探討-以台電桃園區營業處為例★ 應用資料探勘探討筆記型電腦異常零件-以A公司為例
★ 車用配件開發及車主購買意願探討(以C公司汽車配件業務為實例)★ 應用田口式實驗法於先進高強度鋼板阻抗熔接條件最佳化研究
★ 以層級分析法探討評選第三方物流服務要素之研究-以日系在台廠商為例★ 變動良率下的最佳化批量研究
★ 供應商庫存管理架構下運用層級分析法探討供應商評選之研究-以某電子代工廠為例★ 台灣地區快速流通消費產品銷售預測模型分析研究–以聯華食品可樂果為例
★ 競爭優勢與顧客滿意度分析以中華汽車為例★ 綠色採購導入對電子代工廠的影響-以A公司為例
★ 以德菲法及層級分析法探討軌道運輸業之供應商評選研究–以T公司為例★ 應用模擬系統改善存貨管理制度與服務水準之研究-以電線電纜製造業為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-25以後開放)
摘要(中) 逆問題在模擬學上一直是學術探討的主要領域之一。逆問題是將已知觀測結果轉換為未知系統訊息的方法,而本文的重點在於研究模型重建。本研究以逆問題的角度分析SAN網路圖,並使用Goeva et al.(2014)提出的最大熵模型來分析SAN網路圖。網路圖中的每個活動(activity)皆服從指數分配。我們以最大化熵來作為本次實驗中的目標式,而基本的機率限制做為本次的限制式。一般最大熵模型在馬可夫鏈上的應用是直接引用上述目標與限制式,再經由拉格朗日乘數法取得顧客數的穩態機率。但本次實驗則是透過對偶的轉換與迭代分析來逐漸逼近顧客服務率的原始機率分配。使用此方法最大的特色在於可以用較少的限制條件讓觀測者得到顧客服務率。
本研究的目的是希望透過這種逆推法,藉由已知的數據推論網路圖中任意一個活動所依循的分配。在模擬實驗中,我們由數值結果可以發現,以Goeva et al.(2014)提出的演算法所獲得的最佳化解是能有效應用於SAN網路圖。且透過不同的節點與路徑設計,在缺少部分數據下的預測結果依然是準確的。經由敏感度分析,討論了在不同參數設計下各活動預測結果上的差異,並在最後的模型設計中將均方誤差控制在0.002以下。
摘要(英) Inverse problems have always been one of the main areas of simulation. The inverse problem is a method of converting known observations into unknown system information, and the focus of this article is on model reconstruction. This study analyzes the SAN from the perspective of an inverse problem, and uses the maximum entropy model proposed by Goeva et al. (2014) to analyze the SAN network diagram. Each activity in SAN is subject to exponential allocation. We use maximum entropy as the objective function in this experiment, and the basic probability limit is used as the constraints. The difference from the application of the general maximum entropy model on the Markov chain is to directly quote the above objective function and constraints, and then obtain the steady-state probability of the number of customers through the Lagrange multiplier method.But this experiment is to gradually approach the original probability distribution of customer service rate through dual conversion and iterative analysis.The biggest feature of using this method is that the observer can get the customer service rate with fewer restrictions.
The purpose of this study is to hope to infer the distribution that any activity in SAN follows from the known data through this inverse method. In the simulation experiment, we can find from the numerical results that the optimal solution obtained by the algorithm proposed by Goeva et al. (2014) can be effectively applied to the SAN. And through different node and path designs, the prediction results in the absence of some data are still accurate. Through sensitivity analysis, the differences in the prediction results of various activities under different parameter designs are discussed, and the mean square error is controlled below 0.002 in the final model design.
關鍵字(中) ★ 最大熵模型
★ M/M/1 排隊系統
★ SAN 模型
關鍵字(英) ★ maximum entropy model
★ M / M / 1 model
★ SAN model
論文目次 中文摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VI
第一章、緒論 1
1-1  研究背景 1
1-2  研究目的 2
1-3  研究架構 4
第二章、文獻探討 5
2-1  等候理論 5
2-2  Stochastic Activity Networks 6
2-3  逆問題 7
2-4  最大熵模型 9
第三章、研究方法 11
3-1  樣本生成 11
3-1-1  M/M/1模型樣本生成 11
3-1-2  SAN模型樣本生成 12
3-2  最大熵模型最佳化過程 13
3-2-1 M/M/1透過最大熵模型預測結果 16
第四章、實驗結果 18
4-1 以SAN網路圖為例 19
4-2 十個機率權重值 21
4-3 缺少數據下的預測效果 25
4-4 不同參數設計下的實驗結果 32
第五章、結論 37
5-1 結論 37
5-2 未來方向 38
參考文獻 39
參考文獻 [1] Azgomi, M. A. and Movaghar, A., “Hierarchical Stochastic Activity Networks: formal Definitions and Behaviour”, International Journal of Simulation, Systems, Science and Technology, 6(1-2), 56-66, 2005.
[2] Barron, A. R., and Sheu, C. H., “Approximation of Density Functions by Sequences of Exponential Families”, The Annals of Statistics, 1347-1369, 1991.
[3] Bingham, N. H. and Pitts, S. M., “Non-parametric Estimation for the M/G/∞ Queue”, Annals of the Institute of Statistical Mathematics, 51(1), 71-97, 1999.
[4] Basawa, I. V., Bhat, U. N. and Zhou, J., “Parameter Estimation Using Partial Information With Applications To Queueing And Related Models”, Statistics & Probability Letters, 78(12), 1375-1383, 2008.
[5] Csiszár, I., “Sanov property, generalized I-projection and a conditional limit theorem”, The Annals of Probability, 768-793, 1984.
[6] Csiszár, I., “Why Least Squares and Maximum Entropy? An Axiomatic Approach to Inference for Linear Inverse Problems”, The annals of statistics, 19(4), 2032-2066, 1991.
[7] Fearnhead, P., “Filtering Recursions for Calculating Likelihoods for Queues Based on Inter-departure Time Data”, Statistics and Computing, 14(3), 261-266, 2004.
[8] Ghosh, S. and Lam, H., “A Stochastic Optimization Approach to Assessing Model Uncertainty”, Working paper, 2014.
[9] Ghosh, S. and Lam, H., “Mirror descent stochastic approximation for computing worst-case stochastic input models”, In 2015 Winter Simulation Conference, pp. 425-436, 2015.
[10] Goeva, A., Lam, H., and Zhang, B., “Reconstructing Input Models via Simulation Optimization”, In Proceedings of the Winter Simulation Conference 2014, pp. 698-709, 2014.
[11] Hadamard, J., Lectures on Cauchy′s problem in linear partial differential equations, Yale University Press, 1923.
[12] Heidelberger, P. and Lavenberg, S. S., “Computer performance evaluation methodology”, IEEE Transactions on Computers, (12), 1195-1220, 1984.
[13] Hansen, P. C. and O’Leary, D. P., “The use of the L-curve in the regularization of discrete ill-posed problems”, SIAM journal on scientific computing, 14(6), 1487-1503, 1993.
[14] Kaipio, J. and Somersalo, E., Statistical and Computational Inverse problems (Vol. 160), Springer Science and Business Media, 2006.
[15] Kennedy, M. C. and O’Hagan, A., “Bayesian calibration of computer models”, Journal of the Royal Statistical Society: Series B, 63(3), 425-464, 2001.
[16] Nakayama, M. K., “Using sectioning to construct confidence intervals for quantiles when applying importance sampling”, In Proceedings of the 2012 Winter Simulation Conference, pp. 1-12, 2012.
[17] Santner, T. J., Williams, B. J. and Notz, W. I., The design and analysis of computer experiments (Vol. 1), New York: Springer, 2003.
[18] Sanders, W. H. and Meyer, J. F., “Reduced base model construction methods for stochastic activity networks”, IEEE Journal on Selected Areas in Communications, 9(1), 25-36, 1991.
[19] Stuart, A. M., “Inverse problems: A Bayesian perspective”, Acta numerica, 19, 451, 2010.
[20] Tuo, R. and Wu, J., “A Theoretical Framework for Calibration in Computer Models: Parametrization, Estimation and Convergence Properties”, SIAM/ASA Journal on Uncertainty Quantification, 4(1), 767-795, 2016.
[21] Tarantola, A., Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial and Applied Mathematics, 2005.
[22] Van Campenhout, J. and Cover, T. M., “Maximum entropy and conditional probability”, IEEE Transactions on Information Theory, 27(4), 483-489, 1981.
[23] Yuan, J., Ng, S. H. and Tsui, K. L., “Calibration of stochastic computer models using stochastic approximation methods”, IEEE Transactions on Automation Science and Engineering, 10(1), 171-186, 2012.
指導教授 葉英傑(Ying-Chieh Yeh) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明