博碩士論文 965203008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:52.14.57.253
姓名 林姿宜(Tzu-Yi Lin)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 影像縮放於H.264編解碼應用之研究
(Video Downscaling for H.264 CODEC Application)
相關論文
★ 10Gb/s MM XFP光收發模組設計與實現★ 資訊產品自動化測試之研究
★ 高電流密度鰭式氮化鎵高電子遷移率電晶體研究★ 電子郵件及壓縮檔案解碼之研究
★ 渦輪碼在光學記錄系統上之應用★ 離散餘弦轉換硬體架構之研究
★ 動態影像之錯誤隱藏研究★ 即時性無失真壓縮編碼之研究
★ 類神經網路在手寫數字辨識之研究★ 事後機率演算法則在資料儲存系統之研究
★ 紅外線傳輸協定及通道之研究★ 低密度同位元檢查碼在數位資料儲存系統之研究
★ 一種新型的JPEG2000竄改偵測與還原技術★ 即時性無失真壓縮之研究
★ 混合快速模式決策演算法之研究★ 光學記錄MEPR2通道系統之時序恢復探討與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 從高畫質的數位電視到個人隨身攜帶的手機,越來越多支援視訊播放功能的裝置已被人們廣泛使用,為讓視訊能更普遍地在各裝置間相互流傳,適當地調整視訊尺寸的大小以符合裝置的設定顯然是勢在必行。本論文提出以有限長度之升餘弦函數來作影像縮放的想法,並實證其效能優於傳統常用的雙立方、雙線性等函數。再者,本論文也針對影像縮減應用於H.264低位元率的情況作了分析,並得出將欲傳送的視訊縮減為原來一半再用H.264簡單畫面間預測模式編碼,其無論是在編碼時間或畫面品質的效能表現上都相當優異的結論。
摘要(英) More and more devices that support video broadcasting like high definition television (HDTV) or mobile handsets have gained popularity in the world. In order to enable multimedia content to transfer between networks and devices, video rescaling techniques are needed. In this paper, we propose to use truncated raised cosine function for video rescaling. Experimental results reveal that the performance of truncated raised cosine interpolator is superior to that of widely used interpolator like Bicubic or Bilinear. Furthermore, we discuss video downscaling influence under low bit rate constraint for H.264 CODEC. The result shows that downscaling video size to the half before encoding this video with simple H.264 inter prediction mode will get best performance when comparing to other combinations.
關鍵字(中) ★ 影像縮放
★ H.264簡單畫面間預測模式
★ 低位元率
★ 升餘弦函數
關鍵字(英) ★ low bit rate
★ simple H.264 inter prediction mode
★ raised cosine function
★ video rescaling
論文目次 第一章 緒論
1.1 簡介 1
1.2 研究動機 2
1.3 論文架構 3
第二章 影像縮放原理及H.264編解碼介紹
2.1 影像縮放基本原理 4
2.2 基於影像縮放之畫面失真 7
2.3 H.264編解碼簡介 9
2.3.1 H.264編碼器 9
a. 畫面內(intra)預測模式 9
b. 畫面間(inter)預測模式 12
2.3.2 H.264解碼器 16
第三章 升餘弦(Raised Cosine)應用於影像縮放之研究
3.1 理想影像插值器 17
3.2 傳統影像插值法簡介 20
3.2.1 最近相鄰(Nearest-Neighbor)內插法 20
3.2.2 雙線性(Bilinear)內插法 22
3.2.3 雙二階(Biquadratic)內插法 24
3.2.4 雙立方(Bicubic)內插法 24
3.3 升餘弦插值法 27
3.3.1 升餘弦基本介紹 27
3.3.2 升餘弦插值法之性能探討 30
3.4 各種插值法之效能比較 34
3.4.1 計算複雜度 34
3.4.2 影像品質 35
3.4.3 加入編解碼因子之效能表現 43
3.5 結論 50
第四章 影像縮減應用於H.264低位元率視訊編解碼之探討
4.1 針對影像尺寸變換因素之探究 52
4.1.1 基於畫面內預測模式 53
4.1.2 基於畫面間預測模式 57
4.2 簡單畫面間預測模式效能分析 61
4.2.1 複雜型與簡單型畫面間預測模式比較 61
4.2.2 影像縮減與編碼預測模式交互影響之探討 65
4.3 運用畫面群(GOP)概念之高頻資訊補償模型 70
4.3.1 畫面群概念介紹 71
4.3.2 視訊影像高頻重建修正 72
4.3.3 基於畫面群之高頻補償演算法 74
4.4 結論 77
第五章 結論與未來展望 78
參考文獻 79
參考文獻 【1】“Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC 144496-10 AVC),” Joint Video Team of ISO/IEC and ITU-T, March 2003.
【2】“Generic Coding of Moving Pictures and Associated Audio Information,” ISO/IEC 13818-2: Video (MPEG-2), May 1996.
【3】“Video Coding for Low Bit Rate Communication, Version 1,” ITU-T Recommendation H.263, 1995.
【4】“Coding of audio-visual objects - Part 2: Visual,” in ISO/IEC 14496-2 (MPEG-4 Visual Version 1), Apr. 1999.
【5】R.C. Gonzalez and R.E. Woods, “Digital Image Processing,” second edition, Prentice Hall, New Jersey, 2002.
【6】R. Dugad and N. Ahuja, “A Fast Scheme for Image Size Change in the Compressed Domain,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 4, pp. 461–474, Apr. 2001.
【7】H. Shu and L.P. Chau, “An Efficient Arbitrary Downsizing Algorithm for Video Transcoding,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 6, pp. 887–891, Jun. 2004.
【8】Y.S. Park and H.W. Park, “Arbitrary-Ratio Image Resizing Using Fast DCT of Composite Length for DCT-Based Transcoder,” IEEE Trans. Image Process., vol. 15, no. 2, pp. 494-500, Feb. 2006.
【9】Y.S. Park and H.W. Park, “Design and Analysis of an Image Resizing Filter in the Block-DCT Domain,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 2, pp. 274–279, Feb. 2004.
【10】Y.R. Lee and C.W. Lin, “Visual Quality Enhancement in DCT-Domain Spatial Downscaling Transcoding Using Generalized DCT Decimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 8, pp. 1079–1084, Aug. 2007.
【11】P. Thevenaz, T. Blu and M. Unser, “Image Interpolation and Resampling,” Swiss Federal Institute of Technology.
【12】J.V. VEGTE, “Fundamentals of Digital Signal Processing”, Prentice Hall, New Jersey, 2001.
【13】T.M. Lehmann, C. Gonner and K. Spitzer, “Survey: interpolation methods in medical image processing,” IEEE Trans. Med. Imag., vol. 18, no. 11, pp. 1049-1075, Nov. 1999.
【14】E.H.W. Meijering, K.J. Zuiderveld and M.A. Viergever, “Image reconstruction by convolution with symmetrical piecewise nth-order polynomial kernels,” IEEE Trans. Image Process., vol. 8, no. 2, pp. 192-201, Feb. 1999.
【15】K. Turkowski, “Filters for common resampling tasks,” Apple Computer, Apr. 1990.
【16】G. Ramponi, “Warped Distance for Space-variant Linear Image Interpolation,” IEEE Trans. Image Process., vol. 8, no. 5, pp. 629–639, May 1999.
【17】N.A. Dodgson, “Quadratic Interpolation for Image Resampling,” IEEE Trans. Image Process., vol. 6, no. 9, pp. 1322-1326, SEPT. 1997.
【18】R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Signal Process., vol. 29, no. 6, pp. 1153-1160, Dec. 1981.
【19】S.E. El-Khamy, M.M. Hadhoud, M.I. Dessouky, B.M. Salam and F.E.A. El-Samie, “A new edge preserving pixel-by-pixel (PBP) cubic image interpolation approach,” Proceeding of National Radio Science Conference, pp. C11-1-9, March 2004.
【20】J. Shi and S.E. Reichenbach, “Image interpolation by two-dimensional parametric cubic convolution,” IEEE Trans. Image Process., vol. 15, no. 7, pp. 1857-1870, July 2006.
【21】E. Meijering and M. Unser, “A note on cubic convolution interpolation,” IEEE Trans. Image Process., vol. 12, no. 4, pp. 477-479, April 2003.
【22】J. Shi and S.E. Reichenbach, “Interpolation by asymmetric, two-dimensional cubic convolution,” Proceeding of IEEE International Conference on Image Processing, vol. 2, pp. 994-997, Sept. 2005.
【23】S.E. Reichenbach and F. Geng, “Two-dimensional cubic convolution,” IEEE Trans. Image Process., vol. 12, no. 8, pp. 857-865, Aug. 2003.
【24】Joint Video Team software JM12.2 from
http://iphome.hhi.de/suehring/tml/download/
【25】H. Schwarz, D. Marpe and T. Wiegand, “Overview of the scalable video coding extension of the H.264 / AVC standard,” IEEE Trans. Circuits Syst. Video Technol., Vol. 17, No. 9, pp. 1103-1120, Sept. 2007.
【26】B. Girod, A. Aaron, S. Rane and D. Rebollo-Monedero, “Distributed video coding,” Proceedings of the IEEE, vol. 93, no 1, pp. 71-83, Jan. 2005.
【27】F. Brandi, R. de Queiroz and D. Mukherjee, “Super Resolution of Video Using Key Frames,” Proceeding of IEEE International Symposium on Circuits and Systems, pp. 1608-1611, May 2008.
【28】F. Brandi, R. de Queiroz and D. Mukherjee, “Super-resolution of Video Using Key Frames and Motion Estimation,” Proceeding of IEEE International Conference on Image Processing, pp. 321-324, Oct. 2008.
【29】D. Mukherjee, B. Macchiavelo and R. de Queiroz, “A simple reversed-complexity Wyner-Ziv video coding mode based on a spatial reduction framework,” Proceeding of IS&T/SPIE Symp. on Electronic Imaging, Visual Communications and Image Processing, pp. 65081Y1-65081Y12, Jan. 2007.
【30】W.T. Freeman, T.R. Jones and E.C. Pasztor, “Example-based super-resolution,” IEEE Comput. Graph. Appl., vol. 22, no.2, pp. 56-65, Mar./Apr. 2002.
【31】C. A. Segall, R. Molina and A. K. Katsaggelos, “High-resolution images from low-resolution compressed video,” IEEE Signal Process. Mag., vol. 20, pp. 37-48, May 2003.
指導教授 林銀議(Yinyi Lin) 審核日期 2009-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明