博碩士論文 107426004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.217.110.0
姓名 梁苹(Ping Liang)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 類Kiva系統之Kiva派送與Pod暫存區停放位置分配等問題之探討
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,網路科技的日新月異帶動了電子商務的發展,大多數的消費者皆透過網路來購買所需之商品,因此為了蒐集大量數據,以了解消費者喜好及滿足消費者少量多樣之需求,工業4.0及物聯網技術紛紛被引入。然而許多公司為了能盡量在最短的時間內滿足顧客的需求,將物流中心中複雜的硬體與軟體做整合,逐漸朝自動化與智慧化發展。
亞馬遜物流中心於2012年3月,併購了主要生產自動化機器人的Kiva System,為第一個將AGV用於物流中心的公司。於此系統中,會利用Kiva機器人來載取Pod(貨架)至揀貨工作站,從傳統人至物的揀貨方式,變成物至人的作業方式,此舉不僅提高了物流中心之靈活性,也可使揀貨人員能更快速且更準確地完成訂單。
本研究主要延伸探討黃靖華(2017)中模擬亞馬遜物流中心之類Kiva系統中車輛之派送、Pod暫存區位置分配及補貨條件等三個問題進行探討。利用所提出之新的單屬性法則及單屬性組合法則做比較,並利用Arena模擬程式模擬出類似亞馬遜物流中心之環境,再利用三項不同的績效指標來評估在當前之環境下,各種不同的因子組合中,哪些因子組合為最佳,以期望能有效減少Kiva機器人之總揀貨行走距離,藉此提高揀貨人員的工作效率,並最大化系統資源。
摘要(英) In recent years, the fast development of Internet technology has promoted the development of E-commerce. Most consumers purchase the required goods via online. Therefore, in order to collect a large amount of data to understand consumer preferences and satisfied with consumers’ a small and diverse demand, Many enterprises have been introduced Industry 4.0 and Internet of Things technologies. However, in order to meet customers′ demand in the shortest possible time, many companies have integrated the complex hardware and software in the logistics center and gradually developed towards automation and intelligence.
In March 2012, Amazon Logistics Center acquired Kiva System, which mainly produces automated robots, as the first company to use AGVs in logistics centers. In this system, Kiva robots can pick-up and delivery Pods to the picking stations, From the tradition way picker-to-good to good-to-picker , it’s not only improves the flexibility of the logistics center, but also enables the pickers to complete orders faster and more accurately.
In this paper, we continue Huang (2017) research. simulate the problem of Kiva Robot allocation, Pod storage allocation combine and replenishment condition three problems in an environment resembles Kiva System. Propose new single-attribute rules and single-attribute combination rules. The simulation software is used analyze the results and find out the performance of rules proposed by this study in different factors. We expect that the flexibility of the Kiva system and the advantage of receiving instant message will effectively reduce the path of the Kiva robot, improving picker’s efficiency and achieve the best performance for the entire system.
關鍵字(中) ★ 工業4.0
★ 物聯網
★ 亞馬遜物流中心
★ Kiva System
關鍵字(英) ★ Industry 4.0
★ IoT
★ Amazon Logistics Center
★ Kiva System
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 vii
第一章、 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 2
1.4 研究環境 2
1.5 論文架構 5
第二章、 文獻探討 7
2.1 物流 7
2.1.1 物流的定義 8
2.1.2 物流的介紹與作業流程 9
2.2 揀貨作業 11
2.2.1 揀貨方式 11
2.2.2 揀貨路徑 13
2.3 Kiva系統 15
2.3.1 Kiva系統的介紹 15
2.3.2 Kiva系統的流程 18
2.3.3 Kiva系統之相關研究 20
第三章、 研究方法 22
3.1 符號與變數定義 22
3.2 類Kiva系統中揀貨工作站WS(w)之作業流程 23
3.3 類Kiva系統中Pod(p)之作業流程 25
3.4 研究之方法整理 28
3.5 Kiva機器人分配於Pod之相關法則 29
3.5.1 隨機分配法則 29
3.5.2 「與Pod距離最近之Kiva優先分配」法則 29
3.5.3 「閒置最久之Kiva優先分配」法則 30
3.5.4 「使用率最低之Kiva優先分配」法則 31
3.5.5 「剩餘電力最多之Kiva優先分配」法則 32
3.5.6 「與Pod距離最近之Kiva優先分配」法則搭配「剩餘電力最少之Kiva優先分配」法則 33
3.5.7 「與Pod距離最近之Kiva優先分配」法則搭配「剩餘電力最多之Kiva優先分配」法則 34
3.6 Pod暫存區位置指派法則 35
3.6.1 隨機指派位置法則 36
3.6.2 「固定位置停放」法則 36
3.6.3 「與Pod目前位置距離最近的位置優先分配」法則 36
3.6.4 「與Pod原所在之揀貨工作站距離最近的位置優先分配」法則 37
3.6.5 「與揀貨工作站中心點距離最近的位置優先分配」法則 38
3.6.6 「與揀貨工作站(需求)重心點距離最近的位置優先分配」法則 38
3.6.7 「與補貨區中心點距離最近的位置優先分配」法則 39
3.6.8 「與充電區之中心點距離最近的位置優先分配」法則 41
3.6.9 「與整個倉庫中心點距離最近的位置優先分配」法則 42
3.6.10 「與任一揀貨工作站距離最近的位置優先分配」法則 44
3.7 補貨條件 45
3.7.1 「固定缺貨比例」法則 45
3.7.2 「動態缺貨比率」法則 46
第四章、 實驗結果與分析 47
4.1 模擬實驗 47
4.1.1 實驗環境設定 47
4.1.2 實驗環境中訂單設定 49
4.1.3 環境假設 49
4.1.4 實驗因子組合 50
4.2 績效評估準則 52
4.3 實驗分析 53
4.3.1 依「總系統執行時間(TST)」為績效指標 54
4.3.2 依「訂單流程時間(OFT)」為績效指標 59
4.3.3 依「Kiva總執行揀貨任務時間(TPT)」為績效指標 64
4.4 實驗結果 69
第五章、 結論與後續研究建議 71
5.1 研究結論 71
5.2 後續研究建議 72
參考文獻 73
中文文獻 73
英文文獻 74
參考文獻 中文文獻
1.黃慧雯,2019,Yahoo奇摩AI物流中心發威 雙11下單到出貨只要10分鐘,中時電子報,取得日期:11/11/2019,取自:https://www.chinatimes.com/realtimenews/20191111002784-260412?chdtv。
2.黃元欣,2008,「B2C電子商務之物流服務品質研究」,國立中央大學企管管理研究所,碩士論文。
3.黃靖華,2017,類Kiva系統之「Kiva分配於Pod」與「Pod停放位置分配」問題之探討,中央大學工業管理研究所碩士論文,碩士論文。
4.張簡復中,2010,「物流管理」,新文京開發,台北,二版
5.經濟部商業司,1996,「物流經營管理實務」,中國生產力中心,台北
6.譚婧,2020,美國亞馬遜公司:到底有多少萬台機器人在瘋狂工作,每日頭條,取得日期:29/01/2020,取自:https://kknews.cc/tech/k4qq84v.html。

英文文獻
1.Azadeh, K., R. de Koster and D. Roy (2017). Robotized warehouse systems: Developments and research opportunities.
2.Battini, D., M. Calzavara, A. Persona and F. Sgarbossa (2017). "Additional effort estimation due to ergonomic conditions in order picking systems." International Journal of Production Research 55(10): 2764-2774.
3.Bogue, R. (2016). "Growth in e-commerce boosts innovation in the warehouse robot market." Industrial Robot: An International Journal.
4.Bartholdi, J.J., Hackman, S.T., 2005. Warehouse & distribution science. Available on line at: http://www.tli.gatech.edu/ whscience/book/wh-sci.pdf (accessed May 2005).
5.Bozer, Y. A. and F. J. Aldarondo (2018). "A simulation-based comparison of two goods-to-person order picking systems in an online retail setting." International Journal of Production Research 56(11): 3838-3858.
6.Bué, M., D. Cattaruzza, M. Ogier and F. Semet (2019). A Two-Phase Approach for an Integrated Order Batching and Picker Routing Problem. A View of Operations Research Applications in Italy, 2018, Springer: 3-18.
7.BusinessWire(2014) Amazon Unveils its Eighth Generation Fulfillment Center(last visitedFeb,28.2017)https://www.businesswire.com/news/home/20141130005031/en/Amazon-Unveils-Eighth-Generation-Fulfillment-Center
8.Chen, F., H. Wang, Y. Xie and C. Qi (2016). "An ACO-based online routing method for multiple order pickers with congestion consideration in warehouse." Journal of Intelligent Manufacturing 27(2): 389-408.
9.Chen, F., G. Xu and Y. Wei (2019). "Heuristic routing methods in multiple-block warehouses with ultra-narrow aisles and access restriction." International Journal of Production Research 57(1): 228-249.
10.Cho, G. S. (2018). "A Study on Establishment of Smart Logistics Center based on Logistics 4.0. " The Journal of Multimedia Information System, 5(4), 265-272.
11.Correll, N., K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser, K. Okada, A. Rodriguez, J. M. Romano and P. R. Wurman (2016). "Analysis and observations from the first amazon picking challenge." IEEE Transactions on Automation Science and Engineering 15(1): 172-188.
12.D′Andrea, R. and P. Wurman (2008). Future challenges of coordinating hundreds of autonomous vehicles in distribution facilities. 2008 IEEE International Conference on Technologies for Practical Robot Applications, IEEE.
13.De Koster, R., T. Le-Duc and K. J. Roodbergen (2007). "Design and control of warehouse order picking: A literature review." European journal of operational research 182(2): 481-501.
14.Enright, J. J. and P. R. Wurman (2011). Optimization and coordinated autonomy in mobile fulfillment systems. Workshops at the twenty-fifth AAAI conference on artificial intelligence.
15.Goetschalckx, M. and J. Ashayeri (1989). "Classification and design of order picking." Logistics World.
16.Gourdin, K. (2006). Global logistics management: a competitive advantage for the 21st century, Wiley-Blackwell.
17.Guizzo, E. (2008). "Three engineers, hundreds of robots, one warehouse." IEEE spectrum 45(7): 26-34.
18.Hall, R. W. (1993). "Distance approximations for routing manual pickers in a warehouse." IIE transactions 25(4): 76-87.
19.Hamzeh, F. R., I. D. Tommelein, G. Ballard and P. Kaminsky (2007). Logistics centers to support project-based production in the construction industry. Proceedings of the 15th Annual Conference of the International Group for Lean Construction (IGLC 15).
20.Hoffman, A. E., M. C. Mountz, M. T. Barbehenn, J. R. Allard, M. E. Kimmel, F. Santini, M. H. Decker, R. D′andrea and P. R. Wurman (2013). System and method for inventory management using mobile drive units, Google Patents.
21.John Gomez(2020) 6 best order picking methods on line at:https://6river.com/best-order-picking-methods
22.Klodawski, M., R. Jachimowski, I. Jacyna-Golda and M. Izdebski (2018). "Simulation analysis of order picking efficiency with congestion situations." International Journal of Simulation Modelling 17(3): 431-443.
23.Koo, P.-H. (2009). "The use of bucket brigades in zone order picking systems." OR spectrum 31(4): 759.
24.Kulak, O., Y. Sahin and M. E. Taner (2012). "Joint order batching and picker routing in single and multiple-cross-aisle warehouses using cluster-based tabu search algorithms." Flexible services and manufacturing journal 24(1): 52-80.
25.Kiva Systems/Amazon.com.Retrieved December5,2018 ,from https://nocalabs.com/project/kiva-systems-amazon-com/
26.Li, J.-t. and H.-j. Liu (2016). "Design optimization of Amazon robotics." Automation, Control and Intelligent Systems 4(2): 48.
27.Lamballais, T., Roy, D., & De Koster, M. B. M. (2017). Estimating performance in a robotic mobile fulfillment system. European Journal of Operational Research, 256(3), 976-990.
28.Lamballais Tessensohn, T., D. Roy and R. B. De Koster (2020). "Inventory allocation in robotic mobile fulfillment systems." IISE Transactions 52(1): 1-17.
29.Matusiak, M., R. de Koster, L. Kroon and J. Saarinen (2014). "A fast simulated annealing method for batching precedence-constrained customer orders in a warehouse." European Journal of Operational Research 236(3): 968-977.
30.Merschformann, M., T. Lamballais, M. de Koster and L. Suhl (2019). "Decision rules for robotic mobile fulfillment systems." Operations Research Perspectives 6: 100128.
31.Musa, A., & Dabo, A. A. A. (2016). "A review of RFID in supply chain management ": 2000–2015. Global Journal of Flexible Systems Management,17(2), 189-228.
32.Pan, J. C.-H., P.-H. Shih and M.-H. Wu (2015). "Order batching in a pick-and-pass warehousing system with group genetic algorithm." Omega 57: 238-248.
33.Petersen, C. G. (1997). "An evaluation of order picking routeing policies." International Journal of Operations & Production Management.
34.Petersen, C. G. (1999). "The impact of routing and storage policies on warehouse efficiency." International Journal of Operations & Production Management.
35.Petersen, C. G. and G. Aase (2004). "A comparison of picking, storage, and routing policies in manual order picking." International Journal of Production Economics 92(1): 11-19.
36.Rao, S. S. and G. K. Adil (2013). "Class-based storage with exact S-shaped traversal routeing in low-level picker-to-part systems." International Journal of Production Research 51(16): 4979-4996.
37.Roodbergen, K. J. and R. Koster (2001). "Routing methods for warehouses with multiple cross aisles." International Journal of Production Research 39(9): 1865-1883.
38.Roy, D., S. Nigam, R. de Koster, I. Adan and J. Resing (2019). "Robot-storage zone assignment strategies in mobile fulfillment systems." Transportation Research Part E: Logistics and Transportation Review 122: 119-142.
39.Tilanus, C. B. (1997). Information systems in logistics and transportation, Pergamon.
40.Tompkins, J. A., J. A. White, Y. A. Bozer and J. M. A. Tanchoco (2010). Facilities planning, John Wiley & Sons.
41.Tseng, Y.-Y., Y. W. Long and M. A. Taylor (2005). "The Role of Transportation in Logistics Chain. Proceedings of the Eastern Asia Society for Transportation Studies."
42.Van den Berg, J. P. and W. H. Zijm (1999). "Models for warehouse management: Classification and examples." International journal of production economics 59(1-3): 519-528.
43.Van Gils, T., K. Ramaekers, A. Caris and R. B. de Koster (2018). "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review." European Journal of Operational Research 267(1): 1-15.
44.Wurman, P. R., R. D′Andrea and M. Mountz (2008). "Coordinating hundreds of cooperative, autonomous vehicles in warehouses." AI magazine 29(1): 9-9.
45.Wulfraat, M. , (2012). Is Kiva Systems a Good Fit for Your Distribution Center. Retrieved April 20, 2019, from: http://www.mwpvl.com/html/kiva_systems.html
46.Xie, L., Thieme, N., Krenzler, R., & Li, H. (2019). Efficient order picking methods in robotic mobile fulfillment systems. arXiv preprint arXiv:1902.03092.
47.Yoshitake, H., R. Kamoshida and Y. Nagashima (2019). "New Automated Guided Vehicle System Using Real-Time Holonic Scheduling for Warehouse Picking." IEEE Robotics and Automation Letters 4(2): 1045-1052.
48.Zou, B., X. Xu and R. De Koster (2018). "Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system." European Journal of Operational Research 267(2): 733-753.
49.Yuan, Z., & Gong, Y. Y. (2017). Bot-in-time delivery for robotic mobile fulfillment systems. IEEE Transactions on Engineering Management, 64(1), 83-93
指導教授 何應欽(Ying-Chin Ho) 審核日期 2020-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明