博碩士論文 107426014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.222.184.126
姓名 沈劭洋(Shao-Yang Shen)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 利用異常檢測在串流資料建立預警系統
(Establishing an early warning system on streaming data by anomaly detection)
相關論文
★ 二階段作業研究模式於立體化設施規劃應用之探討–以半導體製造廠X及Y公司為例★ 推行TPM活動以改善設備總合效率並提昇 企業競爭力...以U公司桃園工廠為例
★ 資訊系統整合業者行銷通路策略之研究★ 以決策樹法歸納關鍵製程暨以群集法識別關鍵路徑
★ 關鍵績效指標(KPI)之建立與推行 - 在造紙業★ 應用實驗計劃法- 提昇IC載板錫球斷面品質最佳化之研究
★ 如何從歷史鑽孔Cp值導出新設計規則進而達到兼顧品質與降低生產成本目標★ 產品資料管理系統建立及導入-以半導體IC封裝廠C公司為例
★ 企業由設計代工轉型為自有品牌之營運管理★ 運用六標準差步驟與FMEA於塑膠射出成型之冷料改善研究(以S公司為例)
★ 台灣地區輪胎產業經營績效之研究★ 以方法時間衡量法訂定OLED面板蒸鍍有機材料更換作業之時間標準
★ 利用六標準差管理提升生產效率-以A公司塗料充填流程改善為例★ 依流程相似度對目標群組做群集分析- 以航空發動機維修廠之自修工件為例
★ 設計鏈績效衡量指標建立 —以電動巴士產業A公司為例★ 應用資料探勘尋找影響太陽能模組製程良率之因子研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 科技的進步使我們能夠藉由機台內的感測元件快速地收集串流時間序列資料,而 資料挖礦是可以幫助我們從成千上萬的數據中,找出對我們有用的資訊,並協助管理者做適當的決策。在資料挖掘中,異常檢測是熱門的技術之一,在過去的研究當中,點異常與子序列異常是大家研究的焦點,整串的時間序列異常檢測較少被提及。

半導體產業中,在矽晶棒的切割過程中,發生異常會使產品損毀導致損失大量的金錢與延遲交貨,因此必須盡快發現異常並讓現場人員進行停機保養,基於實際需求的動機,開發預警系統並在產品生產的過程中,提供預警訊號並要求停止與保養機台。在本研究中,我們利用點異常或是子序列異常,利用預警系統的監控方案,將點異常或是子序列異常擴展自時間序列異常。

我們的研究資料取自半導體產業工廠的機台資料,本研究中,我們將資料的標籤定義為二元與機率,在標籤為二元時,我們藉由分類模型的幫助下找出異常點(anomaly point),藉由異常點做滑動視窗(Sliding window)的累加,並提出一個新的警報規則,並用來設計監控方案。而在機率標籤中,我們將資料的標籤定義為不發生異常的機率,藉由迴歸模型的幫助下,觀察過去正常與異常的差異,提出相對應的監控方案,並用來做出發出警報的依據。

最後,我們藉由捕獲率(Catching rate)以及誤報率(False alarm),並使用交叉驗證的方式,來評估系統的表現與穩定性。
摘要(英) Advances in technology have allowed us to quickly collect streaming time-series data using sensors in the machine. Data mining can help us find useful information from thousands of data and assist managers to make appropriate decisions.

In data mining, anomaly detection is one of the popular technologies. In the past research, point anomalies and subsequence anomalies have been widely discussed, and the whole time series of time series anomaly detection has been rarely mentioned.

In the semiconductor industry, in the process of the cutting silicon ingot, the occurrence of anomalies will damage the product and cause a lot of money and delay in delivery.

Therefore, it is necessary to find the anomalies as soon as possible and let the operators perform maintenance and stop.

Our research data is taken from the machine data of the semiconductor industry factory. In this study, we define the label presented in binary and probability. When the label presented in binary, we find anomaly point with the help of a classification model. Accumulation of sliding windows is performed through anomaly points. We proposed a new alarm rule, which is used to design a monitoring scheme. In the label presented in probability, we define the label as the non-anomaly probability. With the help of the regression model, we observe the difference between the normal and abnormal in the past, propose a corresponding monitoring scheme, and use it as issuing an alarm.

Finally, we using cross validation to evaluate the performance and robustness of the system by catching rate and false alarm.
關鍵字(中) ★ 預警系統
★ 異常檢測
★ 預測模型
關鍵字(英) ★ early warning system
★ anomaly detection
★ predictive model
論文目次 摘要 i
Abstract ii
Content iii
List of Tables iv
List of Figures v
Chapter 1 Introduction 1
1-1 Research background/motivation 1
1-2 Research objectives 2
Chapter 2 Literature review 4
2-1 Anomaly detection 4
2-1-1 The technique of anomaly detection 4
2-1-2 Anomaly type 5
2-1-3 Anomaly time series 6
2-2 Predictive model 6
2-2-1 Decision tree 7
2-2-2 Logistic regression 7
2-2-3 Bayesian network 8
2-2-4 Neural network 8
2-2-5 Gradient boosting 8
2-3 Early warning system 9
Chapter 3 Methodology 10
3-1 Data preparation 10
3-2 Label presented in binary and probability 11
3-3 Early warning system of label presented in binary 12
3-4 Early warning system of label presented in probability 14
3-5 Evaluation 16
Chapter 4 Data Analysis 18
4-1 Data preparation 18
4-2 Label presented in binary and probability 18
4-2-1 Label presented in binary 18
4-2-2 Label presented in probability 19
4-3 Result 20
4-3-1 The result of the label presented in binary 20
4-3-2 The result of the label presented in probability 24
Chapter 5 Conclusion 27
Reference 29
參考文獻 [1] Ahmada Subutai, Lavina Alexander, Purdya Scott, Aghaab Zuha "Unsupervised real-time anomaly detection for streaming data." Neurocomputing, 2017.
[2] Akcay Samet , Atapour-Abarghouei Amir , Breckon Toby. "GANomaly: Semi-supervised anomaly detection via adversarial training." Asian Conference on Computer Vision, 2018
[3] Aggarwal Charu "Outlier Analysis (2 ed.)." Springer, 2016.
[4] Benkabou Seif-Eddine, Benabdeslem Khalid and Canitia Bruno. 2018. "Unsupervised outlier detection for time series by entropy and dynamic time warping." Knowledge
and Information Systems 54, 2 2018, 463–486.
[5] Breiman Leo, Friedman Jerome, Stone Charles J., Olshen R.A. "Classification and regression trees." Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software, 1984.
[6] Bengio Yoshua, Courville Aaron, and Vincent Pascal. "Representation Learning: A Review and New Perspectives." IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013.
[7] Breiman, L. "Arcing The Edge" . Technical Report 486. Statistics Department, 1997.
[8] Chawla Nitesh V., Japkowicz Nathalie,Japkowicz Nathalie, Kotcz Aleksander. "Editorial: special issue on learning from imbalanced data sets. " SIGKDD Explorations 6, 1-6. 2004.
[9] Chalapath Raghavendra, Chawla Sanjay. "Deep Learning for Anomaly Detection: A Survey. " arXiv:1901.03407v2 23. 2019.
[10] Cortes Corinna and Vapnik Vladimir. "Support-vector networks". Machine Learning, 1995.
[11] Dasgupta Dipankar and Majumdar N. S. "Anomaly detection in multidimensional data using negative selection algorithm." In Proceedings of the IEEE Conference on Evolutionary Computation. 2002.

[12] Fox A. J. "Outliers in Time Series. " Journal of the Royal Statistical Society: Series B (Methodological) 34, 3, 1972.
[13] Friedman, J. H. "Greedy Function Approximation: A Gradient Boosting Machine". The Annals of Statistics, 1999.
[14] Friedman, J. H. "Stochastic Gradient Boosting". Computational Statistics & Data Analysis, 1999.
[15] Georgoulas George, Karvelis Petros, Loutas Theodoros, Styliosa Chrysostomos. "Rolling element bearings diagnostics using the Symbolic Aggregate approximation." Mech.Syst.SignalProcess. 2015.
[16] Gers Felix A., Schmidhuber Jurgen, Cummins Fred. "Learning to forget: Continual prediction with LSTM". 9th International Conference on Artificial Neural Networks, 1999.
[17] García Ane, Conde Angel, Mori Usue, Lozano Jose. "A review on outlier/anomaly detection in time series data." ACM Computing Surveys. 2020.
[18] Hochreiter Sepp and Schmidhuber Jürgen. "Long short-term memory". Neural Computation. 1997.
[19] Hsu Chia-Yu, Chien Chen-Fu and Chen Pei-Nong. "Manufacturing intelligence for early warning of key equipment excursion for advanced equipment control in semiconductor manufacturing. " Journal of the Chinese Institute of Industrial Engineers, 2012.
[20] Jones Michael, Nikovski Daniel, Imamura Makoto and Hirata Takahisa. "Exemplar learning for extremely efficient anomaly detection in real-valued time series. " Data Mining and Knowledge Discovery, 2016
[21] Lin Jessica, Keogh Eamonn, Lonardi Stefano and Chiu Bill, "A Symbolic Representation of Time Series, with Implications for Streaming Algorithms." Data Mining and Knowledge Discovery. 2003.
[22] Lindemann Benjamin, Fesenmyr Fabian, Jazdi Nasser, Weyrich Michael. "Anomaly detection in discrete manufacturing using self-learning approaches. " Procedia CIRP, 2018.
[23] Munir Mohsin, Siddiqui Shoaib Ahmed, Dengel Andreas and Ahmed Sheraz. "DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection in Time Series." IEEE Access, 2019.
[24] Malhotra Pankaj, Vig Lovekesh, Shroff Gautam, Agarwal Puneet. "Long Short Term Memory Networks for Anomaly Detection in Time Series." Computational Intelligence and Machine Learning, 2015.
[25] Pearl Judea. "Bayesian Networks: A Model of Self-Activated Memory for Evidential Reasoning." Proceedings of the 7th Conference of the Cognitive Science Society, 1985.
[26] Rebbapragada Umaa, Protopapas Pavlos, Brodley Carla, Alcock Charles. "Finding anomalous periodic time series: An application to catalogs of periodic variable stars. " Machine Learning, 2009.
[27] Quinlan Ross. "Induction of Decision Trees." Mach. Learn,1986
[28] Quinlan Ross. "C4.5: Programs for Machine Learning." Morgan Kaufmann Publishers, 1993.
[29] Song Shaoxu, Zhang Aoqian, Wang Jianmin, Yu Philip. "SCREEN: Stream Data Cleaning under Speed Constraints." In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, 2015.
[30] Tsay Ruey S. "Outliers, Level Shifts, and Variance Changes in Time Series. " Journal of Forecasting 7" ,1988.
[31] Tsay Ruey, Peña Daniel and Pankratz Alan. "Outliers in multivariate time series. Biometrika",2000.
[32] Yan Weizhong and Yu Lijie. "On Accurate and Reliable Anomaly Detection for Gas Turbine Combustors: A Deep Learning Approach." Annual Conference of the Prognostics and Health Management Society, 2015.
指導教授 曾富祥(Fu-Shiang Tseng) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明