參考文獻 |
1 Synge, E. XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 6, 356-362 (1928).
2 Veselago, V. G. Electrodynamics of substances with simultaneously negative and. Usp. Fiz. Nauk 92, 517 (1967).
3 Pendry, J. B., Holden, A., Stewart, W. & Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Physical review letters 76, 4773 (1996).
4 Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE transactions on microwave theory and techniques 47, 2075-2084 (1999).
5 Pendry, J. B. Negative refraction makes a perfect lens. Physical review letters 85, 3966 (2000).
6 Fang, N., Lee, H., Sun, C. & Zhang, X. Sub–diffraction-limited optical imaging with a silver superlens. Science 308, 534-537 (2005).
7 Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G. & Hillenbrand, R. Near-field microscopy through a SiC superlens. Science 313, 1595-1595 (2006).
8 Durant, S., Liu, Z., Steele, J. M. & Zhang, X. Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit. JOSA B 23, 2383-2392 (2006).
9 Liu, Z. et al. Far-field optical superlens. Nano letters 7, 403-408 (2007).
10 Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: far-field imaging beyond the diffraction limit. Optics express 14, 8247-8256 (2006).
11 Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. science 315, 1686-1686 (2007).
12 Chen, X. et al. Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial. ACS nano 11, 9863-9868 (2017).
13 Wood, R. W. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4, 396-402 (1902).
14 Fano, U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA 31, 213-222 (1941).
15 Ritchie, R. H. Plasma losses by fast electrons in thin films. Physical review 106, 874 (1957).
16 Stern, E. & Ferrell, R. Surface plasma oscillations of a degenerate electron gas. Physical Review 120, 130 (1960).
17 Hessel, A. & Oliner, A. A new theory of Wood’s anomalies on optical gratings. Applied optics 4, 1275-1297 (1965).
18 Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei 216, 398-410 (1968).
19 Drude, P. Zur elektronentheorie der metalle. Annalen der physik 306, 566-613 (1900).
20 邱國斌、蔡定平. 金屬表面電漿簡介. 物理雙月刊 廿八卷二期, 14 (2006).
21 Bozhevolnyi, S. I. & Søndergaard, T. General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. Optics express 15, 10869-10877 (2007).
22 高宗聖、蔡定平. 近場光學新視界. 科學發展月刊 386 期, 4 (2005).
23 Michalet, X. & Weiss, S. Using photon statistics to boost microscopy resolution. Proceedings of the National Academy of Sciences 103, 4797-4798 (2006).
24 Lu, D. & Liu, Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nature communications 3, 1-9 (2012).
25 Lee, H., Liu, Z., Xiong, Y., Sun, C. & Zhang, X. Development of optical hyperlens for imaging below the diffraction limit. Optics express 15, 15886-15891 (2007).
26 Schilling, A., Schilling, J., Reinhardt, C. & Chichkov, B. A superlens for the deep ultraviolet. Applied Physics Letters 95, 121909 (2009).
27 JunáLee, W. & OukáKim, S. Subwavelength imaging in the visible range using a metal coated carbon nanotube forest. Nanoscale 6, 5967-5970 (2014).
28 Rogers, E. T. et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nature materials 11, 432-435 (2012).
29 Regan, C. J., Rodriguez, R., Gourshetty, S. C., de Peralta, L. G. & Bernussi, A. A. Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses. Optics Express 20, 20827-20834 (2012).
30 Casse, B. et al. Super-resolution imaging using a three-dimensional metamaterials nanolens. Applied Physics Letters 96, 023114 (2010).
31 You, S., Kuang, C. & Zhang, B. Resolution criteria in double-slit microscopic imaging experiments. Scientific reports 6, 33764 (2016).
32 Goodman, J. W. Introduction to Fourier optics. (Roberts and Company Publishers, 2005).
33 Wang, M. & Pan, N. Predictions of effective physical properties of complex multiphase materials. Materials Science and Engineering: R: Reports 63, 1-30 (2008).
34 Jen, Y.-J. & Liu, W.-C. Design a Stratiform Metamaterial with Precise Optical Property. Symmetry 11, 1464 (2019).
35 Johnson, P. B. & Christy, R.-W. Optical constants of the noble metals. Physical review B 6, 4370 (1972).
36 Stelling, C. et al. Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells. Scientific reports 7, 1-13 (2017).
37 Rodríguez-de Marcos, L. V., Larruquert, J. I., Méndez, J. A. & Aznárez, J. A. Self-consistent optical constants of SiO 2 and Ta 2 O 5 films. Optical Materials Express 6, 3622-3637 (2016).
38 Rodríguez-de Marcos, L. V., Larruquert, J. I., Méndez, J. A. & Aznárez, J. A. Self-consistent optical constants of MgF 2, LaF 3, and CeF 3 films. Optical Materials Express 7, 989-1006 (2017).
39 Boidin, R., Halenkovič, T., Nazabal, V., Beneš, L. & Němec, P. Pulsed laser deposited alumina thin films. Ceramics International 42, 1177-1182 (2016).
40 Bodurov, I., Vlaeva, I., Viraneva, A., Yovcheva, T. & Sainov, S. Modified design of a laser refractometer. power electronics 2, 1 (2016). |