博碩士論文 107523004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.147.89.85
姓名 陳慶華(Ching-Hua Chen)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 深度學習應用於HEVC畫面內解碼之後處理機制
(CNN-Based Post-Processing for HEVC Intra Prediction)
相關論文
★ 10Gb/s MM XFP光收發模組設計與實現★ 資訊產品自動化測試之研究
★ 高電流密度鰭式氮化鎵高電子遷移率電晶體研究★ 電子郵件及壓縮檔案解碼之研究
★ 渦輪碼在光學記錄系統上之應用★ 離散餘弦轉換硬體架構之研究
★ 動態影像之錯誤隱藏研究★ 即時性無失真壓縮編碼之研究
★ 類神經網路在手寫數字辨識之研究★ 事後機率演算法則在資料儲存系統之研究
★ 紅外線傳輸協定及通道之研究★ 低密度同位元檢查碼在數位資料儲存系統之研究
★ 一種新型的JPEG2000竄改偵測與還原技術★ 即時性無失真壓縮之研究
★ 混合快速模式決策演算法之研究★ 光學記錄MEPR2通道系統之時序恢復探討與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在現今科技與人們生活密不可分的時代,高解析度的影像已經成為人們的日常需求。為了因應高解析度的影像,高效率視訊編碼能夠比上一代的視訊壓縮標準高出了兩倍的壓縮率,這是因為HEVC在影像壓縮技術中使用編碼單元、預測單元、轉換單元以及量化等方式,而在這影像壓縮過程中,為了降低傳輸資訊,使用量化參數導致影像的失真。所以本論文使用卷積神經網路的方式來對於失真影像進行補償,並且引入機器學習中的支持向量機,透過支持向量機來將卷積神經網路的訓練資料集進行分類,而在此提出兩種不同分類方式的主題,一個是利用支持向量機模型來分類,另一個則是使用支持向量機中rhoe的特徵來分類,將訓練資料集分成絕對簡單、相對簡單、相對複雜以及絕對複雜的訓練資料集,而這些特性集中的訓練資料集,在分別使用卷積神經網路去訓練以及優化影像;此外也將支持向量機應用於HEVC編碼端來進行編碼單元快速決策,以節省編碼時間,在畫面內預測中的實驗結果顯示,主題一對於影像品質平均提升0.254 (dB)左右的BDPSNR,並且節省14%左右的編碼壓縮時間,而主題二對於影像品質則是平均提升0.253 (dB)左右的BDPSNR,並且節省15%左右的編碼壓縮時間。除此之外也提出將支持向量機中的特徵復用於卷積神經網路方式,透過將支持向量機中變異數、平均值以及低頻交流值作成SVM Features Mask並引入到網路模型中,使模型預測更加精準,在HEVC畫面內預測中的實驗結果顯示,對於影像品質平均提升0.272 (dB)左右的BDPSNR。
摘要(英) In today′s era where technology is inseparable from people′s lives, high-resolution images have become people′s daily needs. In order to cope with high-resolution images, High-efficiency video coding can achieve a compression rate that is two times higher than the previous generation video compression standards. This is because HEVC uses coding units, prediction units, conversion units, and quantization in image compression technology. In this image compression process, in order to reduce the transmission information, the use of quantization parameters leads to distortion of the image. Therefore, this paper uses the convolutional neural network to compensate for the distorted image, and introduces support vector machines in machine learning. Through the support vector machine to classify the training data set of the convolutional neural network, it is proposed here. Two different classification themes, one is to use the support vector machine model to classify, the other is to use the characteristics of the support vector machine rho to classify, the training data set is divided into absolutely simple, relatively simple, relatively complex and absolutely complex The training data set, and the training data set in these feature concentration, respectively, use convolutional neural networks to train and optimize the image; in addition, the support vector machine is also applied to the HEVC encoding side to quickly make coding unit decisions to save coding time, The experimental results in the intra prediction show that Theme 1 improves the image quality by an average of BDPSNR of about 0.254 (dB) and saves about 14% of the encoding compression time, while Theme 2 improves the image quality by an average of BDPSNR of about 0.253(dB), and Save about 15% of encoding compression time. In addition, it is also proposed to reuse the features in the support vector machine for the convolutional neural network. By making the variance, average and low-frequency AC value of the support vector machine into the SVM Features Mask and introducing it into the network model, the model prediction is more accurate. Experimental results in HEVC intra prediction show that the image quality is improved by an average of BDPSNR of about 0.272 (dB).
關鍵字(中) ★ 高效率視頻編碼
★ 畫面內預測
★ 支持向量機
★ 卷積神經網路
★ 改善編碼性能
★ 分散式編碼
關鍵字(英) ★ HEVC
★ Intra prediction
★ SVM
★ CNN
★ Improved Coding Performance
★ Distributed Coding
論文目次 論文摘要.................................................V
Abstract..............................................VII
誌謝...................................................IX
章節目錄.................................................X
附圖索引..............................................XIII
附表索引.............................................XVIII
第一章、緒論.............................................1
1.1高效率視訊編碼........................................1
1.2 HEVC編碼架構介紹.....................................2
1.2.1編碼單元(Coding Unit)...............................3
1.2.2預測單元(Prediction Unit)...........................4
1.2.3轉換單元(Transform Unit)............................4
1.2.4碼率失真代價函數(RD Cost)............................5
1.2.5畫面內編碼預測......................................6
1.2.6 量化(Quantization)................................9
1.3支持向量機介紹.......................................10
1.4深度學習介紹.........................................13
1.4.1人工神經網路.......................................14
1.4.2倒傳遞神經網路.....................................15
1.4.3深度神經網路(Deep Neural Network)..................16
1.4.4卷積神經網路(Convolutional Neural Networks,CNN)....17
1.5研究動機與目的.......................................20
1.6論文架構............................................20
第二章、相關文獻回顧.....................................21
2.1 超分辨率技術(Super-Resolution, SR)..................21
2.2 SVM應用於HEVC編碼單元(CU)快速深度決策演算法...........23
2.3 CNN應用於HEVC以增進影像品質相關文獻...................36
2.3.1 Study of A Deep Learning Architecture For HEVC Decoder................................................36
2.3.2 An In-loop Filter Based on Low-Complexit CNN Using Residuals in Intra Video Coding........................39
2.3.3 Enhancing Hevc Compressed Videos With A Partition-Masked Convolutional Neural Network....................42
第三章、一種新型SVM與CNN應用於HEVC解碼端之後處理架構........46
3.1 整體系統架構........................................46
3.1.1 環境配置..........................................55
3.2 卷積神經網路訓練與測試...............................56
3.2.1 前處理階段........................................56
3.2.2 訓練階段..........................................58
3.2.3 測試階段..........................................61
3.3 性能探討與分析......................................63
3.3.1 性能探討..........................................63
3.3.2 編解碼時間分析....................................72
3.4 結論分析............................................79
第四章、一種SVM中特徵之深度學習網路架構....................80
4.1 整體系統架構........................................81
4.2 卷積神經網路訓練與測試...............................88
4.2.1 資料前處理........................................88
4.2.2 模型訓練..........................................89
4.2.3 測試階段..........................................91
4.3 性能探討與分析......................................92
4.3.1性能探討...........................................92
4.3.2編解碼時間分析....................................100
4.4 結論分析...........................................106
第五章、結論與未來展望..................................107
參考文獻...............................................108
參考文獻 [1]“Coding of audio-visual objects - Part 2:Visual,” in ISO/IEC 14496-2(MPEG-4 Visual Version 1), Apr. 1999.
[2]I. E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia. Aberdeen, U.K.: John Wiley & Sons, 2003.
[3]JCT-VC, “High efficiency video coding (HEVC) test model 15(HM15) encoder description,” JCTVC-Q1002, JCT-VC Meeting, Valencia, ES, Apr. 2014.
[4]G.J. Sullivan, J.R. Ohm, W.J. Han, T. Wiegand, “ Overview of the High Efficiency Video Coding (HEVC) Standard,” IEEE Trans. CSVT, vol. 22, no. 12, Dec. 2012.
[5]C. Dong, C.C. Loy, K. He, X. Tang, “Learning a Deep Convolutional Network for Image Super-Resolution”, European Conference on Computer Vision (ECCV), ECCV 2014: Computer Vision – ECCV 2014 pp. 184-199
[6]C. Dong, C.C. Loy, X. Tang, “Accelerating the Super-Resolution Convolutional Neural Network”, European Conference on Computer Vision (ECCV), ECCV 2016: Computer Vision – ECCV 2016 pp 391-407
[7]W. Shi, J. Caballero, F. Huszár, J. Totz, A.P. Aitken, R. Bishop, D. Rueckert, Z. Wang, “Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 1874-1883
[8]J. Kim, J.K. Lee, K.M. Lee, “Accurate Image Super-Resolution Using Very Deep Convolutional Networks”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 1646-1654
[9]J. Kim, J.K. Lee, K.M. Lee, “Deeply-Recursive Convolutional Network for Image Super-Resolution”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 1637-1645
[10]X.J. Mao, C. Shen, Y. Yang, “Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections”, arXiv preprint arXiv:1606.08921, 2016
[11]Y. Tai, J. Yang, X. Liu, “Image Super-Resolution via Deep Recursive Residual Network”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3147-3155
[12]W.S. Lai, J.B. Huang, N. Ahuja, M.H. Yang, “Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 624-632
[13]T. Tong, G. Li, X. Liu, Q. Gao, “Image Super-Resolution Using Dense Skip Connections”, The IEEE International Conference on Computer Vision (ICCV), 2017, pp. 4799-4807
[14]C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, W. Shi, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 4681-4690
[15]K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image Recognition”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778
[16]A. Norkin, G. Bjontegaard, A. Fuldseth, M. Narroschke, M. Ikeda, K. Andersson, M. Zhou, G.V. Auwera, “HEVC deblocking filter,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1746–1754, 2012.
[17]C.M. Fu, E. Alshina, A. Alshin, Y. Huang, C.Y. Chen, C.Y. Tsai, C.W. Hsu, S.M. Lei, J.H. Park,W.J. Han, “Sample adaptive offset in the HEVC standard,” IEEE Transactions on Circuits and Systems for Video technology, vol. 22, no. 12, pp. 1755–1764, 2012.
[18]W.S. Park, M. Kim, “CNN-based inloop filtering for coding efficiency improvement,” in Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), 2016 IEEE 12th. IEEE, 2016, pp. 1–5.
[19]S. Kuanar, C. Conly, K.R. Rao,“Deep learning based HEVC in-loop filtering for decoder quality enhancement”, 2018 Picture Coding Symposium (PCS)
[20]J. Kang, S. Kim, K.M. Lee,“Multi-modal/multi-scale convolutional neural network based in-loop filter design for next generation video codec”, 2017 IEEE International Conference on Image Processing (ICIP)
[21]H. Zhang, L. Song, Z. Luo, X. Yang, “Learning a Convolutional Neural Network for Fractional Interpolation in HEVC Inter Coding”, 2017 IEEE Visual Communications and Image Processing (VCIP)
[22]R. Yang, M. Xu, Z. Wang, “Decoder-side hevc quality enhancement with scalable convolutional neural network,” in Multimedia and Expo (ICME), 2017 IEEE International Conference on. IEEE, 2017, pp. 817–822.
[23]C.H. Yeh, Z.T. Zhang, M.J. Chen, C.Y. Lin, “HEVC Intra Frame Coding Based on Convolutional Neural Network”, IEEE Access p.p. 50087 – 50095
[24]F. Li, W. Tan, B. Yan,“Deep Residual Network for Enhancing Quality of the Decoded Intra Frames of Hevc”, 2018 25th IEEE International Conference on Image Processing (ICIP)
[25]S.J. Cai, “Reduction of computation complexity for HEVC intra prediction with support vector machine,” National Central University, Master Thesis, Jun 2017.
[26]C. Li, L. Song, R. Xie, W. Zhang, "Cnn Based Post-Processing To Improve Hevc", International Conference on Image Processing(ICIP) 2017, pp.4577-4580
[27]J. Xu, L. Song, R. Xie,"Shot boundary detection using convolutional neural networks", Visual Communications and Image Processing (VCIP), 2016. IEEE, 2016, pp. 1–4.
[28]Grand Challenge ICIP 2017, "Grand challenge on the use of image restoration for video coding efficiency improvement", Chttps://storage.googleapis.com/icip-2017/index.html.
[29]X. He, Q. Hu, X. Han, X. Zhang, C. Zhang, W. Lin, "Enhancing Hevc Compressed Videos With A Partition-Masked Convolutional Neural Network", International Conference on Image Processing(ICIP) 2018, pp.216-220
[30]Y.Dai, D. Liu, F.Wu, "A Convolutional Neural Network Approach for Post-Processing in HEVC Intra Coding", MultiMedia Modeling(MMM) 2017, pp.28-39
[31]R. Yang, M. Xu, Z. Wang, Z. Guan, "Enhancing quality for HEVC compressed videos", arXiv preprint arXiv:1709.06734, 2017.
[32]Daowen Li, Lu Yu, “An In-Loop Filter Based on Low-Complexity CNN using Residuals in Intra Video Coding”, 2019 IEEE International Symposium on Circuits and Systems (ISCAS)
[33]S.M. Fan, “Study of A Deep Learning Architecture For HEVC Decoder”, Department of Communication Engineering National Central University, Taiwan 32054, R.O.C., Jan 2020.
[34]Y.C. Chang, “A Combined Support Vector Machine and Convolutional Neural Network Architecture for HEVC”, Department of Communication Engineering National Central University, Taiwan 32054, R.O.C., Jan 2020.
指導教授 林銀議(Yin-yi Lin) 審核日期 2020-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明