博碩士論文 106523030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.116.239.195
姓名 宋嘉喆(Jia-Jhe Song)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 毫米波多輸入多輸出系統中使用深度學習技術應用於混合預編碼與合併器設計
(Hybrid Precoding and Combining Designs by Using Deep Learning in Millimeter Wave MIMO Systems)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 股票開盤價漲跌預測
★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討★ 大數量且有限天線之多輸入多輸出系統效能分析
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-9-1以後開放)
摘要(中) 本論文將深度學習(DL)技術結合於毫米波多輸入多輸出系統中的混合預編碼與合併器設計,透過適當的訓練過程可以提升預測的準確性。我們的訓練資料包含毫米波通道以及射頻預編碼和射頻合併器矩陣。藉由大量的訓練資料與Adam演算法根據當前參數所得到的均方誤差(MSEs)調整參數,以此提升神經網路預測的準確性。訓練結束後將測試集通道餵入訓練好的神經網路(NN)並得到預測結果也就是射頻預編碼與射頻合併器的相位,在給定一個射頻預編碼的情況下我們可以利用最小平方法求解獲得基頻預編碼,相似的方法應用在射頻合併器得到基頻合併器矩陣。在不同數據流數量的情況下,根據深度神經網路的結果計算頻譜效率並從頻譜效率中可以說明我們設計的方法是有競爭力的。
摘要(英) In this thesis, we apply deep learning (DL) techniques to solve hybrid precoding and combining design problems in millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems. To increase the accuracy of prediction is achieved through an appropriately training process. Our training data set includes mmWave channels, and solutions of RF analog precoders along with combiners. By utilizing a lot of training data and the Adam optimizer to adjust the parameters based on the mean square errors (MSEs), we can improve the accuracy of prediction. After training process, we feed testing data set into neural network (NN) and obtain the solutions of the phases of RF analog precoder and combiner. Given the RF analog precoder, we can acquire baseband precoder by using least square solutions; and the similar methodology is applied to the design of the RF analog combiner along with acquiring the baseband combiner. In the cases of different numbers of data streams, we calculate the spectral efficiency based on the outputs of DNN in the simulations results, and it can be observed that our method is competitive to the existing schemes.
關鍵字(中) ★ 混合預編碼與合併器
★ 多輸入多輸出
★ 深度學習
關鍵字(英)
論文目次 論文摘要 i
Abstract ii
致謝 iii
Contents iv
List of Figures vi
List of Tables vii
Chapter1. Introduction 1
1.1 Precoding 1
1.2 Hybrid Precoding and Combining 1
1.3 Deep Learning 2
1.4 Organization 3
1.5 Abbreviations 4
1.6 Notation 4
Chapter2. System model and Training data 6
2.1 Deep Neural Network 6
2.2 Input data 8
2.3 Labels 10
Chapter 3. Propose Scheme 16
3.1 Weights and Biases 16
3.2 Adam Optimizer 16
3.3 Dropout 17
3.4 Training Process 18
3.5 Baseband Precoder and Combiner 22
Chapter 4. Simulation Results 24
4.1 Results 24
4.2 Algorithm 29
Chapter 5. Conclusion 31
Reference 32
參考文獻 [1] X. Zhang, A. F. Molisch and S.-Y. Kung, "Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection," in IEEE Transactions on Signal Processing, vol. 53, no. 11, pp. 4091-4103, Nov. 2005.
[2] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi and R. W. Heath, "Spatially Sparse Precoding in Millimeter Wave MIMO Systems," in IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499-1513, Mar. 2014.
[3] W. Ni and X. Dong, "Hybrid Block Diagonalization for Massive Multiuser MIMO Systems," in IEEE Transactions on Communications, vol. 64, no. 1, pp. 201-211, Jan. 2016.
[4] N. Li, Z. Wei, H. Yang, X. Zhang and D. Yang, "Hybrid Precoding for mmWave Massive MIMO Systems With Partially Connected Structure," in IEEE Access, vol. 5, pp. 15142-15151, 2017.
[5] J. Zhang, Y. Huang, T. Yu, J. Wang and M. Xiao, "Hybrid Precoding for Multi-Subarray Millimeter-Wave Communication Systems," in IEEE Wireless Communications Letters, vol. 7, no. 3, pp. 440-443, Jun. 2018.
[6] M. Abadi et al., "TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems," arXiv: 1603.04467, 2016. [Online]. Availabel: https://arxiv.org/abs/1603.04467.
[7] A. Paszke et al., "Automatic differentiation in Pytorch," in Proc. Neural Information Processing Systems, 2017, pp. 1-4.
[8] C. Wen, W. Shih and S. Jin, "Deep Learning for Massive MIMO CSI Feedback," in IEEE Wireless Communications Letters, vol. 7, no. 5, pp. 748-751, Oct. 2018.
[9] K. Kim, J. Lee and J. Choi, "Deep Learning Based Pilot Allocation Scheme (DL-PAS) for 5G Massive MIMO System," in IEEE Communications Letters, vol. 22, no. 4, pp. 828-831, Apr. 2018.
[10] H. Ye, G. Y. Li and B. Juang, "Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems," in IEEE Wireless Communications Letters, vol. 7, no. 1, pp. 114-117, Feb. 2018.
[11] M. Kim, W. Lee and D. Cho, "A Novel PAPR Reduction Scheme for OFDM System Based on Deep Learning," in IEEE Communications Letters, vol. 22, no. 3, pp. 510-513, Mar. 2018.
[12] A. Felix, S. Cammerer, S. Dörner, J. Hoydis and S. Ten Brink, "OFDM-Autoencoder for End-to-End Learning of Communications Systems," in Proc. IEEE International Workshop on Signal Processing Advances in Wireless Communications, Kalamata, 2018, pp. 1-5.
[13] W. Lee, "Resource Allocation for Multi-Channel Underlay Cognitive Radio Network Based on Deep Neural Network," in IEEE Communications Letters, vol. 22, no. 9, pp. 1942-1945, Sept. 2018.
[14] L. Fang and L. Wu, "Deep learning detection method for signal demodulation in short range multipath channel," in Proc. IEEE International Conference on Opto-Electronic Information Processing, Singapore, 2017, pp. 16-20.
[15] B. Kim, J. Kim, H. Chae, D. Yoon and J. W. Choi, "Deep neural network-based automatic modulation classification technique," in Proc. International Conference on Information and Communication Technology Convergence, Jeju, 2016, pp. 579-582.
[16] T. Gruber, S. Cammerer, J. Hoydis and S. t. Brink, "On deep learning-based channel decoding," in Proc. Conference on Information Sciences and Systems, Baltimore, MD, 2017, pp. 1-6.
[17] K. He, X. Zhang, S. Ren and J. Sun, "Delving Deep into Rectifiers: Surpassing Human-level Performance on ImageNet Classification", in Proc. IEEE International Conference on Computer Vision, Santiago, 2015 pp. 1026-1034.
[18] D. P. Kingma and J. Ba, "ADAM: A Method for Stochastic Optimization", arXiv: 1412.6980, 2014. [Online]. Available: https://arxiv.org/abs/1412.6980.
[19] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", in Journal of Machine Learning Research, vol. 15, no. 1, pp.1929-1958, Jan. 2014.
[20] A. L. Maas, A. Y. Hannun and A. Y. Ng, "Rectifier Nonlinearities Improve Neural Network Acoustic Models", in Proc. International Conference on Machine Learning, 2013.
指導教授 陳永芳 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明