博碩士論文 107523602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.118.30.253
姓名 翁媞娜(Thitinan Wongkitrungrueag)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 三維空間機會網路下高效率的訊息傳送方法
(An Efficient Message Forwarding scheme in 3D Opportunistic Networks)
相關論文
★ 非結構同儕網路上以特徵相似度為基準之搜尋方法★ 以階層式叢集聲譽為基礎之行動同儕網路拓撲架構
★ 線上RSS新聞資料流中主題性事件監測機制之設計與實作★ 耐延遲網路下具密度感知的路由方法
★ 整合P2P與UPnP內容分享服務之家用多媒體閘道器:設計與實作★ 家庭網路下簡易無縫式串流影音播放服務之設計與實作
★ 耐延遲網路下訊息傳遞時間分析與高效能路由演算法設計★ BitTorrent P2P 檔案系統下載端網路資源之可調式配置方法與效能實測
★ 耐延遲網路中利用訊息編碼重組條件之資料傳播機制★ 耐延遲網路中基於人類移動模式之路由機制
★ 車載網路中以資料匯集技術改善傳輸效能之封包傳送機制★ 適用於交叉路口環境之車輛叢集方法
★ 車載網路下結合路側單元輔助之訊息廣播機制★ 耐延遲網路下以靜態中繼節點(暫存盒)最佳化訊息傳遞效能之研究
★ 耐延遲網路下以動態叢集感知建構之訊息傳遞機制★ 跨裝置影音匯流平台之設計與實作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來與無人機相關的應用被廣泛研究,在不同的情境下,使用無人機支援網路環境,並透過有效的部署無人機群以及無人機之間的合作輔以網絡中繼方法,以擴展網絡通信的服務範圍,此類路由方法與新式的儲存-攜帶-傳送機制相仿,應用於大範圍無線網路的問題,因此,相對於傳統沒有無人機的高度變動網路環境,飛行的無人機群能藉由轉傳資料,快速的將訊息送至終點。

然而,目前關於行動機會網路應用於三維空間的研究尚未成熟,我們提出了資料搜集的方法藉由無人機訊息轉傳以及緩衝區管理的技術輔助,以提高訊息的傳送效率於三度空間中,我們將之命名為多台無人機藉全域訊息輔助排程及訊息丟棄策略之方法。
本研究中,我們展示了三種無人機於三度空間通訊的角色定位:傳感器無人機、運輸無人機及中心無人機,本方法有以下步驟:首先,執行設計建模中的三維空間坐標定位,包括定義其運動軌跡以及模型的建置;而後,我們將過去於耐延遲網路中針對緩衝區管理策略運用到此網路架構中;接著,當無人機輔助設備相互接觸後,為了減輕負荷並快速轉發數據,我們考慮到使用的運輸無人機的數量,將收集的資訊的路由策略選擇不同的路徑,並考慮訊息的存活時間以及緩衝區空間可最大化投放比例。最終,我們透過於機會網路的模擬器驗證我們所提出方法的效能,實驗結果顯示,本研究能
確實提高訊息的傳送率,降低了訊息的延遲時間以及整體系統的負擔,並且在整個研究步驟中,實現了仿真和分析三維空間的機會網絡性能。
摘要(英) The UAV application has been widely researched in the past decade. Over numerous scenarios, researchers have exploited the facility of UAVs to support the network service.
To deploy efficiently for extensible network communications, it is advantageous for using a group of UAVs that cooperate in data delivery in three-dimensional (3D) opportunistic networks. UAVs regularly adopt a novel Store-Carry-Forward (SCF) mechanism to solve data delivery in large-scale communication environments. As compared with no assistant of UAVs in a highly dynamic routing model, UAVs flying to handover data can achieve rapid data transfer to the destination. However, there are quite a few studies on supporting mobile opportunistic networking in 3D space. Our scheme on data gathering using UAV-based message forwarding technology can aid data delivery with buffer
management policy in 3D opportunistic space. This new design is named Multi-Ferry Forwarding with Extended Global Knowledge-based scheduling and drop policy (F-EGBSD),
which is intended for maximizing the delivery ratio. This study demonstrates the entire communication scenario in the air by offering the UAV sensor, UAV transporter assist,
and UAV center base station. The approach consists of several phases. Firstly, we perform the 3D coordinate location on modeling design, including movement patterns integrated into the 3D mobility model. Secondly, we extend the buffer management policy from the E-GBSD routing scheme and integrate it into 3D opportunistic networks. We then
establish a relay selection algorithm for messages forwarding when the UAV-assisted ferries are inter-contacted to offload data rapidly. Under considering the number of ferries used, Time-To-Live (TTL), and buffer space, this approach significantly maximizes the
delivery ratio. Ultimately, the simulation experiments are conducted on The Opportunistic Network Environment (ONE) simulator platform to evaluate the proposed F-EGBSD
performance as compared to the previous approach. Simulation results show that the proposed F-EGBSD achieves a better performance in terms of increasing average delivery rate and decreased average delay time. The whole study procedure leads to the creation of realistic simulation and analyzes the performance of F-EGBSD.
關鍵字(中) ★ 訊息轉發技術
★ 三維空間環境
★ 移動機會網路
★ 無人機網路
★ 數據收集
★ 無線感測網路
★ 緩衝區管理演算法
關鍵字(英) ★ Message forwarding
★ 3D FANETs Simulation
★ Mobile opportunistic networks
★ Unmanned aerial vehicle (UAV)
★ Data gathering
★ Buffer management
論文目次 摘要 i
Abstract ii
List of Figures v
List of Tables ix
1 Introduction 1
2 Related Work 4
2.1 UAV-Assisted Data Gathering applications 4
2.2 Routing Strategies and Buffer Management 5
2.2.1 Routing Strategies 5
2.2.2 Buffer Management 6
2.3 Mobility Model 7
3 System Overview and Problem Formulation 8
3.1 System Model 8
3.2 UAV Mobility Model 9
3.3 Problem Definition and Formulation 10
3.3.1 Utility Function 13
3.4 Solution and Algorithm design 13
3.4.1 Message Scheduling and Drop 13
3.4.2 Relay Selection 14
3.4.3 Maximize The Delivery Rate 16
3.4.4 3D Design Model 19
3.4.5 Time Complexity 20
4 Simulation and Performance Result 22
4.1 Simulation Settings 22
4.1.1 Performance Metrics 23
4.1.2 Impact of TTL in Messages 24
4.1.3 Impact of the Number of T-UAVs 25
4.1.4 Impact of the Buffer Size in T-UAVs 26
4.1.5 Impact of Map Size 27
4.1.6 Summary of Performance Results 28
5 Conclusion 57
Bibliography 59
參考文獻 [1] I. Bekmezci, O. K. Sahingoz, and Ş. Temel, “Flying ad-hoc networks (fanets): A
survey,” Ad Hoc Networks, vol. 11, no. 3, pp. 1254–1270, 2013.
[2] S. S. Bacanli, G. Solmaz, and D. Turgut, “Opportunistic message broadcasting in
campus environments,” in Proceedings of 2015 IEEE Global Communications Conference (GLOBECOM). IEEE, 2015, pp. 1–6.
[3] K. Fall, “A delay-tolerant network architecture for challenged internets,” in Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols
for computer communications, 2003, pp. 27–34.
[4] D. Liu, Y. Xu, J. Wang, Y. Xu, A. Anpalagan, Q. Wu, H. Wang, and L. Shen,
“Self-organizing relay selection in uav communication networks: A matching game
perspective,” IEEE Wireless Communications, vol. 26, no. 6, pp. 102–110, 2019.
[5] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile internet of things: Can
uavs provide an energy-efficient mobile architecture?” in Proceedings of 2016 IEEE
global communications conference (GLOBECOM). IEEE, 2016, pp. 1–6.
[6] M. B. Ghorbel, D. Rodríguez-Duarte, H. Ghazzai, M. J. Hossain, and H. Menouar,
“Joint position and travel path optimization for energy efficient wireless data gathering using unmanned aerial vehicles,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 3, pp. 2165–2175, 2019.
[7] Y. Zhou, N. Cheng, N. Lu, and X. S. Shen, “Multi-uav-aided networks: Aerial-ground
cooperative vehicular networking architecture,” ieee vehicular technology magazine,
vol. 10, no. 4, pp. 36–44, 2015.
[8] J. Wu, “A multi-tiered network with aerial and ground coverage,” Computer Communications, vol. 131, pp. 39–42, 2018.
[9] Y.-F. Hsu and C.-L. Hu, “Enhanced buffer management for data delivery to multiple
destinations in dtns,” IEEE Transactions on Vehicular Technology, vol. 65, no. 10,
pp. 8735–8739, 2015.
[10] A. Krifa, C. Barakat, and T. Spyropoulos, “Message drop and scheduling in dtns:
Theory and practice,” IEEE Transactions on Mobile Computing, vol. 11, no. 9, pp.
1470–1483, 2011.
[11] C. Bettstetter, G. Resta, and P. Santi, “The node distribution of the random waypoint mobility model for wireless ad hoc networks,” IEEE Transactions on mobile
computing, vol. 2, no. 3, pp. 257–269, 2003.
[12] Y. Yang, Z. Zheng, K. Bian, L. Song, and Z. Han, “Real-time profiling of fine-grained
air quality index distribution using uav sensing,” IEEE Internet of Things Journal,
vol. 5, no. 1, pp. 186–198, 2017.
[13] A. Lindgren and K. S. Phanse, “Evaluation of queueing policies and forwarding
strategies for routing in intermittently connected networks,” in Proceedings of 2006
1st International Conference on Communication Systems Software & Middleware.
Ieee, 2006, pp. 1–10.
[14] A. Durresi, V. Paruchuri, L. Barolli, and R. Jain, “Air to air communication protocol,” in Proceedings of 2006 IEEE Aerospace Conference. IEEE, 2006, pp. 8–pp.
[15] A. Nayyar, “Flying adhoc network (fanets): simulation based performance comparison of routing protocols: Aodv, dsdv, dsr, olsr, aomdv and hwmp,” in Proceedings
of 2018 International Conference on Advances in Big Data, Computing and Data
Communication Systems (icABCD). IEEE, 2018, pp. 1–9.
[16] A. Bujari, C. E. Palazzi, and D. Ronzani, “A comparison of stateless position-based
packet routing algorithms for fanets,” IEEE Transactions on Mobile Computing,
vol. 17, no. 11, pp. 2468–2482, 2018.
[17] Z. Zheng, A. K. Sangaiah, and T. Wang, “Adaptive communication protocols in flying
ad hoc network,” IEEE Communications Magazine, vol. 56, no. 1, pp. 136–142, 2018.
[18] M. Y. Arafat and S. Moh, “Routing protocols for unmanned aerial vehicle networks:
A survey,” IEEE Access, vol. 7, pp. 99 694–99 720, 2019.
[19] A. Balasubramanian, B. Levine, and A. Venkataramani, “Dtn routing as a resource
allocation problem,” in Proceedings of the 2007 conference on Applications, technologies, architectures, and protocols for computer communications, 2007, pp. 373–384.
[20] A. Krifa, C. Barakat, and T. Spyropoulos, “Optimal buffer management policies for
delay tolerant networks,” in Proceedings of 2008 5th annual IEEE communications
society conference on sensor, mesh and ad hoc communications and networks. IEEE,
2008, pp. 260–268.
[21] Y. Li, M. Qian, D. Jin, L. Su, and L. Zeng, “Adaptive optimal buffer management
policies for realistic dtn,” in Proceedings of GLOBECOM 2009-2009 IEEE Global
Telecommunications Conference. IEEE, 2009, pp. 1–5.
[22] T. Le, H. Kalantarian, and M. Gerla, “A joint relay selection and buffer management
scheme for delivery rate optimization in dtns,” in Proceedings of 2016 IEEE 17th
International Symposium on A World of Wireless, Mobile and Multimedia Networks
(WoWMoM). IEEE, 2016, pp. 1–9.
[23] I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong, “On the levy-walk
nature of human mobility,” IEEE/ACM transactions on networking, vol. 19, no. 3,
pp. 630–643, 2011.
[24] K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong, “Slaw: A new mobility model for
human walks,” in Proceedings of IEEE INFOCOM 2009. IEEE, 2009, pp. 855–863.
[25] O. Bouachir, A. Abrassart, F. Garcia, and N. Larrieu, “A mobility model for uav ad
hoc network,” in Proceedings of 2014 international conference on unmanned aircraft
systems (ICUAS). IEEE, 2014, pp. 383–388.
[26] S. Rashed and M. Soyturk, “Effects of uav mobility patterns on data collection in
wireless sensor networks,” in Proceedings of 2015 IEEE International Conference on
Communication, Networks and Satellite (COMNESTAT). IEEE, 2015, pp. 74–79.
[27] P. K. Sharma and D. I. Kim, “Random 3d mobile uav networks: Mobility modeling
and coverage probability,” IEEE Transactions on Wireless Communications, vol. 18,
no. 5, pp. 2527–2538, 2019.
[28] S. Althunibat, O. S. Badarneh, and R. Mesleh, “Random waypoint mobility model
in space modulation systems,” IEEE Communications Letters, vol. 23, no. 5, pp.
884–887, 2019.
[29] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau, “CRAWDAD
dataset cambridge/haggle (v. 2009-05-29),” Downloaded from https://crawdad.org/
cambridge/haggle/20090529, May 2009.
指導教授 胡誌麟(Chih-Lin Hu) 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明