博碩士論文 106523011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.224.246.203
姓名 吳宗翰(Tsung-Han Wu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於QR 分解檢測之多輸入多輸出非正交多重接取技術
(QRD-Based Signal Detection for MIMO-NOMA Systems)
相關論文
★ 利用二元關聯法之簡易指紋辨識★ 使用MMSE等化器的Filterbank OFDM系統探討
★ Kalman Filtering應用於可適性載波同步系統之研究★ 無線區域網路之MIMO-OFDM系統設計與電路實現
★ 包含通道追蹤之IEEE 802.11a接收機設計與電路實現★ 時變通道下的OFDM傳輸系統設計: 基於IEEE 802.11a標準
★ MIMO-OFDM系統各天線間載波頻率偏差之探討 與收發機硬體實現★ 使用雜散式領航訊號之DVB-T系統通道估測演算法與電路實現
★ 數位地面視訊廣播系統同步模組 之設計與電路實現★ 適用於移動式正交分頻多工通訊系統的改良型時域通道響應追蹤演算法
★ 正交分頻多工系統通道估測基於可適性模型化通道參數估測★ 以共同項載波頻率偏移補償於正交分頻多重存取系統中減少多重存取干擾之方法
★ 正交分頻多工系統之資料訊號裁剪雜訊消除★ 適用於正交分頻多工通訊系統的改良型決策反饋之卡爾曼濾波通道估測器
★ 半盲目通道追蹤演算法使用於正交分頻多工系統★ 正交分頻多重存取以共同項載波頻率偏移補償以達到最小均方誤差之方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 多輸入多輸非正交多重接取(Multiple-Input Multiple-Output Non-orthogonal multiple access, MIMO-NOMA)系統中,在接收端有嚴重的干擾問題,造成訊號無法順利解出,因此如何抑制干擾是個必須面對的議題。過去幾年,已經有很多技術被提出來解決此問題,其中利用傳送端預編碼(Precoding) 是常被拿來使用的技術之一,然而再傳送訊號前基地台(Base Station,BS) 必須先了解全局的通道狀態資訊(Channel State Information,CSI),在實際傳輸上面臨重大挑戰,再者此方法並無法將所有使用者干擾完全消除乾淨,且在接收天線數也有所限制,因而降低整體系統效能表現。
本論文,我們提出MIMO檢測(Detection) 技術,透過使用者在接收端自行將干擾消除,不但不須回傳全局CSI,更能完全消除干擾,在接收天線數目上也有調整彈性。因此,首先我們提出三種分別 Zero-forcing、MMSE及SVD檢測方法,並設計了一個基於QR 分解檢測之MIMO-NOMA系統,對其進行中斷機率數學分析,最後利用模擬與數學推導結果進行比對,且比較各方法之性能及優缺點。
摘要(英) In a multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) system, serious interference occurs at the receiver, leading to the received signal unable to be successfully decoded. In the past few years, many methods were proposed to solve this problem. Transmitter precoding is one of the widely used techniques. However, the base station (BS) must acquire the global Channel State Information (CSI) before transmission, and thus the system overhead is increased. Moreover, Precoding techniques cannot effectively eliminate inter-cluster interference as well as limit the number of receiving antennas. Due to the above disadvantage, the overall system performance is seriously degraded.
In this thesis, we propose a MIMO detection technology which can let the user eliminate interference by itself. This method not only does not need to return the global CSI, but also can completely eliminate interference. Moreover, it has the flexibility to adjust the number of receiving antennas. First, we study three different detection methods, i.e., Zero-forcing, MMSE, and SVD, and then propose a QRD-Based Signal Detection method for the MIMO-NOMA system. The mathematical analysis of outage probability is explored and the computer simulation is
performed to compare the performance for different detection methods.
關鍵字(中) ★ 非正交多重接取
★ 多輸入多輸出檢測接收技術
★ 強制歸零
★ 最小均方誤差
★ 奇異質分解
★ QR分解
關鍵字(英) ★ NOMA
★ MIMO detection
★ Zero-forcing
★ MMSE
★ SVD
★ QR decomposition
論文目次 中文摘要 i
英文摘要 iii
目錄 i
圖目錄 ii
表目錄 iii
第1章 序論 1
1.1 簡介 1
1.2 章節架構 5
第2章 System Model 6
2.1 NOMA 基本架構 6
2.1.1 傳送端 7
2.1.2 接收端 8
2.2 MIMO 基本架構 9
2.3 MIMO-NOMA系統 10
第3章 MIMO-NOMA系統性能分析 13
3.1 系統干擾抑制分析 13
3.2 干擾抑制向量設計 16
3.2.1 強制歸零(Zero Forcing, ZF) 16
3.2.2 最小均方誤差(Minimum Mean Square Error, MMSE) 18
3.2.3 奇異值分解(Singular Value Decomposition, SVD) 19
第4章 基於QR分解檢測之MIMO-NOMA系統 22
4.1 系統分析 22
4.2 中斷機率(Outage probability) 分析 25
第5章 系統模擬與解果分析 28
5.1 Outage probability 及Achievable throughput 性能分析 28
5.2 天線傳送功率分配對QRD 方法之吞吐量影響 41
5.3 天線數對複雜度影響分析 45
第6章 結論 48
參考文獻 49
參考文獻 [1] H. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser MIMO systems,” IEEE Transactions on Communications, vol. 61, no. 4, pp. 1436–1449, April 2013.
[2] F. L. Luo and C. Zhang, Signal Processing for 5G: Algorithms and Implementations. John Wiley and Sons, 2016.
[3] L. Zhang, M. Xiao, G. Wu, M. Alam, Y.C.
Liang, and S. Li, “A survey of advanced techniques for spectrum sharing in 5G networks,” IEEE Wireless Commun., vol. 24, no. 5, pp. 44–51, October 2017.
[4] H. Lee, S. Kim, and J. H. Lim, “Multiuser superposition transmission (MUST) for LTE-A systems,” in IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–6.
[5] C. Wang, J. Chen, and Y. Chen, “Power allocation for a downlink non-orthogonal multiple access system,” IEEE Wireless Commun. Lett., vol. 5, no. 5, pp. 532–535, October 2016.
[6] Z. Yang, Z. Ding, P. Fan, and N. AlDhahir,
“A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems,” IEEE Trans. Wireless Commun., vol. 15, no. 11, pp. 7244–7257, November 2016.
[7] G. Song and X. Wang, “Comparison of interference cancellation schemes for non-orthogonal multiple access system,” in Proc.2016 IEEE 83rd Veh. Technol. Conf., May 2016, pp. 1–5.
[8] H. Haci, H. Zhu, and J. Wang, “Performance of non-orthogonal multiple access with a novel asynchronous interference cancellation technique,” IEEE Trans. Wireless Commun., vol. 65, no. 3, pp. 1319–1335, March 2017.
[9] Z. Ding, X. Lei, G. Karagiannidis, R. Schober, J. Yuan, and V. Bhargava, “A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends,” IEEE J. Sel. Areas Commun, vol. 35, no. 10, pp. 2181–2195, October 2017.
[10] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey of non-orthogonal multiple access for 5G,” IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 2294–2323, 3rd Quart. 2018.
[11] S. Islam, N. Avazov, O. A. Dobre, and K.S. Kwak, “Powerdomain non-orthogonal multiple access (NOMA) in 5G systems:Potentials and challenges,” IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 721–742, 2nd Quart. 2017.
[12] R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless information and power transfer,” IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 1989–2001, May 2013.
[13] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskei, “An overview of MIMO communications a
key to gigabit wireless,” Proc. IEEE, vol. 92, no. 2, pp. 198–218, February 2004.
[14] R. W. Heath, N. GonzalezPrelcic, S. Rangan, W. Roh, and A. Sayeed, “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE J. Sel. Top. Signal Process., vol. 10, no. 3, pp. 436–453, April 2016.
[15] Y. Huang, C. Zhang, J. Wang, Y. Jing, L. Yang, and X. You, “Signal processing for MIMO-NOMA: present and future challenges,” IEEE Wireless Commun, vol. 25, no. 2, pp. 32–38, April 2018.
[16] S. L. B. Kim, H. Kim, S. Suh, J. Kwun, S. Choi, C. Lee, S. Lee, and D. Hong, “Non-orthogonal multiple access in a downlink multiuser beamforming system,” in IEEE Military Communications Conference, November 2013, pp. 1278–1283.
[17] J. Choi, “Minimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systems,” IEEE Trans. Commun, vol. 63, no. 3, pp. 791–800, March 2015.
[18] Z. Ding, L. Dai, and H. V. Poor, “MIMO-NOMA
design for small packet transmission in the internet of things,” IEEE Access, vol. 4, pp. 1393–1405, April 2016.
[19] Y. Liu, M. Elkashlan, and Z. Ding, “Fairness of user clustering in MIMO non-orthogonal multiple access systems,” IEEE Commun. Lett, vol. 20, no. 7, pp. 1465–1468, July 2016.
[20] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO channels,” IEEE JSAC, vol. 21, no. 5, pp. 684–702, June 2003.
[21] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: a fundamental tradeoff in multiple antenna channels,” IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1073–1096, May 2003.
[22] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501–1505, December 2014.
[23] Y. Hama and H. Ochiai, “Performance analysis of matched filter detector for MIMO systems in rayleigh fading channels,” in IEEE Global Commun. Conf. (GLOBECOM), December 2017, pp. 1–6.
[24] Z. Ding, F. Adachi, and H. V. Poor, “The application of MIMO to non-orthogonal multiple access,” IEEE Trans. Wireless Commun, vol. 15, no. 1, pp. 537–552, January 2016.
[25] A.M.Tulino and S.Verdu, Foundations and Trends in
Communications and Information Theory: Random Matrix Theory and Wireless Communications. Hanover, MA, USA: Now Publishers, 2004.
[26] S. Timotheou and I. Krikidis, “Fairness for non-orthogonal multiple access in 5G systems,” IEEE Signal Process. Lett., vol. 22, no. 10, pp. 1647–1651, October 2015.
[27] M. Ali, H. Tabassum, and E. Hossain, “Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems,” IEEE Access, vol. 4, pp. 6325–6343, August 2016.
[28] G. H. Golub and C. F. V. n Loan, Matrix Computations. The Johns Hopkins University Press, 2013.
指導教授 張大中(Dah-Chung Chang) 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明