博碩士論文 107426036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.14.253.106
姓名 詹秉寰(Ping-Huan Chan)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 以動態X ̅-R 管制圖判定塗布機異常現象之先導因子
(Using Dynamic X ̅-R control charts to determine leading indicators for Coater machine Anomaly)
相關論文
★ 以類神經網路探討晶圓測試良率預測與重測指標值之建立★ 六標準突破性策略—企業管理議題
★ 限制驅導式在製罐產業生產管理之應用研究★ 應用倒傳遞類神經網路於TFT-LCD G4.5代Cell廠不良問題與解決方法之研究
★ 限制驅導式生產排程在PCBA製程的運用★ 平衡計分卡規劃與設計之研究-以海軍後勤支援指揮部修護工廠為例
★ 木製框式車身銷售數量之組合預測研究★ 導入符合綠色產品RoHS之供應商管理-以光通訊產業L公司為例
★ 不同產品及供應商屬性對採購要求之相關性探討-以平面式觸控面板產業為例★ 中長期產銷規劃之個案探討 -以抽絲產業為例
★ 消耗性部品存貨管理改善研究-以某邏輯測試公司之Socket Pin為例★ 封裝廠之機台當機修復順序即時判別機制探討
★ 客戶危害限用物質規範研究-以TFT-LCD產業個案公司為例★ PCB壓合代工業導入ISO/TS16949品質管理系統之研究-以K公司為例
★ 報價流程與價格議價之研究–以機殼產業為例★ 產品量產前工程變更的分類機制與其可控制性探討-以某一手機產品家族為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 於統計製程管制(SPC)之中,管制圖被廣泛應用於偵測製程屬性上的偏移。而大部分的機台廣泛依靠sensor收集生產過程所產生的製程資料,而隨著工業持續進步,資料收集的間隔已經大幅所短,此型態的製程資料存在序列相關的特性,可視為時間序列資料。
X ̅ Control chart與R Control chart對於製程具有資料獨立性與常態性的假設的限制。因此應用於低時間間隔情境下所獲取的製程資料,易產生誤判。因此,我們提出一項以傳統管制圖偵測時間序列資料的管制圖建立機制,此方法提出一套完整的資料離散方法與抽樣概念,解決傳統管制圖的限制條件。
本次研究基於A公司所提供之塗佈機生產資料進行應用,塗佈機設置大量感測器偵測多項屬性資料,以PID(proportional–integral–derivative)控制器調節機台的運轉,系統接收資訊並隨時修正運轉狀態。但是,當發生突發狀況,導致機器運轉的狀況超出系統允許及時修正的範圍,將大幅度降低系統修正的效率,而重大異常的停機事件與事後檢修亦造成相當可觀的成本。
本研究可視為一項先導研究,根據上述提到的問題,我們將以新型態的管制圖建立流程,發展一套針對塗布機生產環境之異常偵測方法,以提供工程師更多判斷異常資訊的依據。本方法亦可對應多種參數設定環境下所之生產資料,與同時監控多個區域以及具備良好的彈性。
摘要(英) In Statistical Process Control (SPC), control charts are widely used to detect deviations in process attributes. Most of the machines widely rely on sensors to collect data during the process. With the continuous progress of the industry, the data collection interval has been greatly shortened. This type of process data has serial correlation, which can be regarded as time series data.
The X ̅ Control chart and R Control chart has limitations on the assumptions of data independence and normality. Therefore, it may cause misjudgments when applied to the process data obtained in the context of low time intervals. We propose a control chart establishment mechanism that uses traditional control charts to detect time series data. This method proposes a complete set of data discrete methods and sampling concepts to solve the limitations of traditional control charts.
This research is based on the process data of the coating machine provided by company A. The coating machine is equipped with a large number of sensors to detect multiple attribute data, and the Proportional–Integral–Derivative(PID) controller is used to adjust the operation of the machine, and the system receives Information and revise the operating status at any time. However, when an emergency occurs that causes the machine to operate beyond the range allowed by the system to be corrected in time, the efficiency of system correction will be greatly reduced, and major abnormal shutdowns and post-repairs will also cause considerable costs.
This study can be regarded as a pilot study. Based on the problems mentioned above, we will develop a set of abnormal detection methods for the production environment of the coating machine with a new type of control chart establishment process, so as to provide engineers with more information about abnormalities. More judgments on the basis of abnormal information. This method can also correspond to the production materials in a variety of parameter setting environments, monitor multiple areas at the same time, and have good flexibility.
關鍵字(中) ★ X ̅-R管制圖
★ 局部性回歸
★ 動態管制界限
★ 時間窗口
關鍵字(英) ★ X ̅-R control chart
★ local regression
★ dynamic control limit
★ time window
論文目次 摘要 i
Abstract ii
Contents iii
List of Figures iv
List of Table v
Chapter 1 Introduction 1
1.1 Background & Motivation 1
1.2 Research objectives 5
1.3 Research Methodology 7
Chapter 2 Literature Review 8
2.1 Statistical Process Control 8
2.2 Dynamic control limit 9
2.3 Local regression 11
2.5 Time window 12
Chapter 3 Research Method 14
3.1 Data discretization 14
3.2 X Control chart and R Control chart 16
3.3 Local Regression 21
3.4 Time window 25
Chapter 4 Experiment and Analysis 27
4.1 Data preparation 27
4.2 Data discretization and sampling 33
4.3 Calculate Control limit and Two-stage anomaly detection process 34
Chapter 5 Conclusion 41
Reference 43
參考文獻 [1] Benhenni, K., Ferraty, F., Rachdi, M., & Vieu, P. (2007). Local smoothing regression with functional data. Computational Statistics, 22(3), 353–369.
[2] Burr, W. I. (1967). The effect of nonnormality on constants for x and R charts. Industrial Quality Control, 563.
[3] Cleveland, W. S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association, 74(368), 829–836.
[4] Grano, N. B., & Kain, P. E. (1968). Load Cells in Automatic Control of Paper Machines. IEEE Transactions on Industry and General Applications, IGA-4(4), 415–427.
[5] Hong-Seok,P., and Xuan-Phuong.D.(2017). Development of a Coating Machine for Making Automotive Seat Covers. Transactions of KSAE, Vol. 25, No. 3, pp.267-272
[6] Horng Shiau, J.-J., & Ya-Chen, H. (2005). Robustness of the EWMA Control Chart to Non-normality for Autocorrelated Processes. Quality Technology & Quantitative Management, 2(2), 125–146.
[7] Jing-Er, Chiu (2015). Support Vector Machine for recognizng Process Shifts in Autocorrelated Processes. Journal of Science and Technology Vol.24, No.1, 11-18
[8] Kimmel, R. K., Booth, D. E., & Booth, S. E. (2010). The analysis of outlying data points by robust Locally Weighted Scatter Plot Smooth: a model for the identification of problem banks. International Journal of Operational Research, 7(1), 1.
[9] Li, Guang; Wang, Jie; Liang, Jing; Yue, Caitong (2018). Application of Sliding Nest Window Control Chart in Data Stream Anomaly Detection. Symmetry, 10(4), 113
[10] Lim, P., Goh, C. K., & Tan, K. C. (2016). A time window neural network based framework for Remaining Useful Life estimation. 2016 International Joint Conference on Neural Networks (IJCNN).
[11] Ma, Li; Gu, Xiaodu; Wang, Baowei (2017). Correction of Outliers in Temperature Time Series Based on Sliding Window Prediction in Meteorological Sensor Network. Information, 8(2), 60
[12] Montgomery, D. C. (2005), “Statistical Quality Control,” 5th ed., John Wiley & Sons Inc.
[13] Pan, J-N., His, C. T., & Chen, S. C. (2009). Model selection for autocorrelated residual control charts. Journal of Quality, 16(4), 245-260.
[14] Pratama, S. W., Nhita, F., & Adiwijaya. (2016). Implementation of local regression smoothing and fuzzy-grammatical evolution on rainfall forecasting for rice planting calendar. 2016 4th International Conference on Information and Communication Technology (ICoICT).
[15] Psarakis, S., & Papaleonida, G. E. A. (2007). SPC Procedures for Monitoring Autocorrelated Processes. Quality Technology & Quantitative Management, 4(4), 501–540.
[16] Sun, L., Wu, J., Jia, H., & Liu, X. (2017). Research on fault detection method for heat pump air conditioning system under cold weather. Chinese Journal of Chemical Engineering, 25(12), 1812–1819.
[17] Wang, Haitao(2016). Application of residual-based EWMA control charts for detecting faults in variable-air-volume air handling unit system. Journal of Control Science and Engineering.
[18] Winkel, P. and Zhang, N. F., (2004), “Serial Correlation of Quality Control Data-on the Use of Proper Control Chart”, Scandinavian Journal of Clinical and Laboratory Investigation, 64, 195-204.
[19] Zhang, N. F. (1998). Estimating process capability indexes for autocorrelated data. Journal of Applied Statistics, 25(4), 559–574
指導教授 沈國基(Gwo-Ji Sheen) 審核日期 2021-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明